
Parametric amplification of short pulses in optical fiber Bragg gratings

M. J. Steel and C. Martijn de Sterke
School of Physics, University of Sydney, New South Wales 2006, Australia

and Australian Photonics Cooperative Research Centre, 101 National Innovation Centre, Australian Technology Park,
Eveleigh, New South Wales 1430, Australia

~Received 18 April 1996!

We studyx (3) parametric amplification of a weak signal pulse tuned to a Bragg grating through a series of
numerical simulations. These simulations demonstrate that gratings permit strong signal amplification for large
wave vector mismatches between pump, signal, and idler, even though gain would be prohibited in the
corresponding uniform medium. The enhanced gain is explained in terms of a shift in the signal wave vector
due to the strong dispersion induced by the grating, an effect which is well known from other frequency
conversion processes. Forx (3) parametric amplification, the pulsed regime introduces several new effects,
many of which are explained by simple arguments based on the cw dispersion relation of the grating. Notably,
the gain exhibits a ‘‘self-locking’’ behavior, in that there is considerable freedom in the input frequency of the
signal.@S1063-651X~96!06909-7#

PACS number~s!: 42.65.Ky, 42.65.Hw

I. INTRODUCTION

The study of short optical pulses in Bragg gratings has
been dominated by two broad areas. In the linear regime, one
of the main themes has been that of dispersion compensation
in chirped optical fiber Bragg gratings for long-haul commu-
nications. Proposed some time ago@1#, this has now been
clearly demonstrated@2–4#. In the nonlinear regime, theo-
retical studies of switching@5# and gap solitons occupy most
of a now considerable literature~see Ref.@6# for a recent
review!. Behind this nonlinear work is the fundamental idea
that light tuned close to the Bragg resonance, which would
be reflected at low intensities, may at sufficiently high inten-
sities tune itself out of the band gap and thus be transmitted,
exhibiting solitonlike propagation. Both bistability@7–9#,
and gap solitons or ‘‘Bragg grating solitons’’@10# have now
been observed experimentally.

An area of nonlinear processes in Bragg gratings that has
received much less attention is the interaction between a
strong pump pulse and a weak signal pulse inside a grating.
Several authors have considered pump-induced switching of
a cw signal by a pump detuned from the grating@11,12# and
the concept has received a first demonstration@13#. In other
work, we treated the case where the pump and signal are
both pulses and are widely separated in frequency@14,15#.
Whereas the signal is tuned to the grating and travels with a
group velocity much less than the speed of light, the pump
propagates unimpeded at the speed of light in the medium.
Under these conditions, it was found that although if both the
pump and signal are weak, the pump overtakes and passes
through the signal; a high intensity pump produces substan-
tial reshaping of the signal. Through cross-phase modulation
~XPM!, the signal is shifted to lower frequencies on the grat-
ing dispersion relation where the group velocity is larger,
and in addition the signal becomes chirped. Thus the average
frequency shift causes the signal to accelerate and keep up
with the pump, while the chirp and grating dispersion lead to
compression of the signal. The net effect is to see the com-
pressed signal swept out of the grating on the leading edge of

the pump—the so-called ‘‘optical pushbroom.’’ The fre-
quency separation is required to be large to guarantee that the
only nonlinear interaction is XPM.

Recently, we have studied a more complex problem in
which the geometry is unchanged but we relax the condition
of large frequency separation between the pump and signal
@16#. This allows the nonlinear process of four wave mixing
or parametric amplification to occur according to the relation
vp1vp5vs1v i , in which two pump photons of frequency
vp are converted to one photon each at the signalvs and
idler v i frequencies. The frequencies are separated by the
quantity

Dv5vs2vp5vp2v i . ~1!

Note that although the fields are now more closely spaced in
frequency, we still assume that only the signal frequency is
affected by the grating~see Fig. 1!. We demonstrate below

FIG. 1. Schematic of the frequencies involved in the parametric
amplification system.
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that such a situation indeed occurs in optical fibers. The rela-
tive efficiency of the process is governed by the wave vector
mismatch parameter

D5ks1ki22kp , ~2!

where ks ,ki ,kp are the wave vectors corresponding to the
frequenciesvs ,v i ,vp . In the absence of the grating, ampli-
fication of the signal only occurs for a limited range of the
mismatchD, dependent on the pump power@17#. Although
the detailed dynamics when the grating is included are highly
involved, in our previous work we found very general behav-
ior for a wide range of parameters@16#. In short, the inclu-
sion of the grating allows amplification of the signal and
idler by the pump for a large range of parameters that would
not permit growth without the grating. ProvidingD is not too
large, the purely compressive effect seen in the optical push-
broom @14,15# is swamped by amplification of the signal.
Moreover, in contrast to the optical pushbroom where the
signal sits on the leading edge of the pump pulse, when
parametric amplification is able to operate, the signal be-
comes located on the trailing edge of the pump.

The enhancement in gain is a result of ‘‘grating-assisted
phase matching,’’ an effect which is well known for fre-
quency conversion processes in the continuous wave~cw!
regime@18–25#. Adding a grating introduces strong disper-
sion near the Bragg resonance so that the wave vector of any
field tuned to the grating varies much more rapidly with
frequency than in the uniform medium. The mismatchD thus
changes and so the grating influences the efficiency of the
frequency conversion. In fact, for particular detunings from
the resonance, efficient conversion may become possible be-
tween frequencies that would not be phase matched in the
uniform medium. Many frequency conversion processes are
governed by phase matching conditions and hence a grating
may enhance any of these processes. Several authors have
studied the influence of a grating on cw second harmonic
generation~SHG! through ax (2) nonlinearity @20–25#. In
general, one finds enhancement of the harmonic for frequen-
cies on one side of the Bragg resonance where the grating
achieves phase matching. On the other side of the Bragg
resonance, the grating worsens the phase matching and there
is minimal output@21,25#. These predictions have been veri-
fied experimentally for SHG in semiconductor gratings@26#.
A similar enhancement in gain is predicted to occur for cw
parametric amplification with ax (3) nonlinearity @19#,
though with several complications over the SHG problem:
through XPM the signal experiences a nonlinear change in
the refractive index which causes the enhancement of the
gain to be shifted to lower frequencies~assuming a positive
nonlinearity!. Moreover, unlike the SHG case, the degree of
enhancement depends on the input pump power. Finally, in
the absence of the grating@17#, parametric gain occurs over a
range of values ofD, whereas in SHG, the relevant mismatch
parameter is required to vanish identically to achieve phase
matching. This difference is mirrored when a grating is in-
cluded.

Whereas the continuous wave regime of frequency con-
version in gratings has attracted much attention, as far as we
are aware our previous paper~see Ref.@15#! is the only study
that has considered short pulses. In the undepleted pump

approximation, the cw problem for SHG is described by a
driven linear system. Hence, pulsed SHG in gratings can be
reduced to a Fourier superposition of the cw response and we
would not expect qualitatively new results. In contrast, as our
earlier work showed@16#, new effects are found with pulsed
x (3) parametric amplification. Notably, the gain becomes
‘‘self-locking’’—the input signal need not be tuned to the
frequency at which the grating produces phase matching.
Rather, cross-phase modulation ensures that this frequency is
generated automatically.

Including general time dependence into the problem of
parametric amplification in Bragg gratings leads to a system
that is resistant to analytic techniques; note for instance that
we have no natural nonlinear modes on which to build a
perturbation theory as has been done for problems of per-
turbed gap solitons@27#. In our previous work therefore@16#,
we studied the system through numerical simulations. We
continue this approach in this paper, but in much greater
detail. We begin by showing further examples of the en-
hancement of the signal gain to illustrate the wide variety of
parameters for which it occurs. We then demonstrate that the
enhancement is indeed a result of grating-assisted phase
matching. We also explore and explain trends in several as-
pects of the gain as the system parameters are varied. These
aspects include the time taken for the gain to begin, the rate
of gain, and the width of the signal and idler pulses during
the amplification. Although the parameter space for the prob-
lem is very large, we nevertheless provide physical explana-
tions for virtually all the qualitative features we observe.
Thus although fully quantitative results must be found from
complete simulations, a sound physical knowledge of this
system is still attainable.

The remainder of the paper is structured as follows. In
Sec. II we present the relevant features of previous work on
cw frequency conversion in gratings. Our fully time-
dependent model is presented in Sec. III where we recall the
behavior of pulses undergoing parametric amplification in
uniform media, while in Sec. IV we map out the parameter
space to be explored when the grating is included. Sec. V
contains the results of our simulations and demonstrations of
the action of the grating in achieving phase matching. In Sec.
VI we discuss a number of trends in physical properties ob-
served in the simulations. Finally in Sec. VII we briefly dis-
cuss some additional points.

II. PROPERTIES OF BRAGG-ASSISTED
CONTINUOUS WAVE FREQUENCY CONVERSION

We now summarize the properties of cw parametric am-
plification in gratings@19#, which remain relevant in the
pulsed case. We begin, however, with the simpler case of
parametric amplification in a uniform medium.

A. Grating-free parametric amplification

The mismatch parameterD is a linear property of the
medium that depends on the intrinsic material~and wave-
guide! dispersion of the medium. On the other hand, the
phase-matching condition required for gain depends on the
details of the nonlinear interaction. For parametric amplifi-
cation with ax (3) nonlinearity in the absence of the grating
@17#, the signal experiences gain if
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24m̃<D<0, ~3!

where we have defined the nonlinear detuning

m̃5GuPu2, ~4!

in terms of the pump amplitudeP and the nonlinear coeffi-
cient G53vsx

(3)/(2cn), wherec is the speed of lightin
vacuoandn is the refractive index of the medium. The am-
plification is most efficient when

D522m̃. ~5!

This equation represents an exact balance between the wave
vector mismatch that results from the material dispersion,
and an additional nonlinear wave vector mismatch induced
by cross-phase modulation@17#.

B. Effects with a grating

Most of the effects of the grating on phase matching can
be understood from Fig. 2 which shows the dispersion rela-
tion of a uniform Bragg grating~solid line! superposed on
the straight line dispersion relation of the corresponding uni-
form medium~dashed line!. The vertical axis is represented
in terms of the detuning from the Bragg resonance

d5
v2vB

vg
. ~6!

Here vg is the group velocity of the signal in the uniform
medium, andvB5pc/(n̄d) is the resonant Bragg frequency,
with d and n̄ the period and average index of the grating,
respectively. The uniform medium dispersion relation of

course does not have constant slope over all frequencies—it
curves due to the dispersion which gives rise to the wave
vector mismatch in the first place. Over the bandwidth of the
grating, however, the intrinsic dispersion is negligible. This
is especially true in optical fibers for which the grating depth
is modest and the bandwidth affected by the grating rela-
tively narrow—the deepest made so far have a relative band-
width of Dl/l&0.01. The properties of the grating disper-
sion relation are well known—the periodicity opens up a
photonic band gap representing frequencies for which trav-
eling waves are forbidden and light is reflected. The gap has
width 2vgk where the coupling strengthk5vDn/(2c) with
Dn the refractive index modulation of the grating. Outside
the gap, traveling waves are allowed, but the dispersion re-
lation is strongly curved with the group velocity given by its
slope~see Fig. 2!.

For our purposes, the most important consequence of the
grating is indicated by the horizontal arrows in Fig. 2. When
compared to its wave vector in the uniform medium, light of
a particular frequency experiences a shift in wave vector of
size @18–22#

Dks52d6Ad22k2. ~7!

The choice of sign reflects the fact that the grating allows
light to exist on either of two branches for any detuning, with
the upper sign taken for the branches to the right of the
Bragg wave numberkB5vBn̄/c. Note from Fig. 2 that the
shift is negative for frequencies above the band gap
(d.k), and positive for frequencies below the gap
(d,2k). Further the shift may be greater or smaller than
the coupling strengthk: Shifts of uDksu,k are achieved on
the branch near the uniform medium line~indicated by the
solid arrows and the labels a and c in Fig. 2!; shifts of
uDksu.k are achieved on the far branch~indicated by the
dotted arrows and the labels b and d in Fig. 2!, and simply by
taking udu large enough, a wave vector shift of arbitrary size
and sign is obtained regardless of the grating strength! Thus
although the phase matching condition may not be satisfied
in the uniform medium, in the grating there is a change to the
mismatch parameter due to the shift in the signal wave vec-
tor so that phase matching may be possible permitting effi-
cient conversion@21#. From Eq. ~7! we find that for any
givenDks , the signal is phase matched at the unique detun-
ing

d52
~Dks!

21k2

2Dks
. ~8!

In principle then, at the correct detuning the grating produces
phase matching for any initial mismatchD.

This result is at first sight surprising—we would not ex-
pect that a weak grating should significantly enhance the
gain at a frequency far detuned from the Bragg resonance.
The resolution lies in noting that phase matching is not of
itself sufficient to produce gain—there must be a reasonable
longitudinal mode overlap between the pump and signal
modes. While the modes of a uniform medium are forward-
and backward-traveling plane waves, the modes inside a

FIG. 2. Dispersion relation for a Bragg grating~solid! super-
posed on uniform medium dispersion relation~dotted!. Column
vectors indicate the Bloch vectorsf5( f1 , f2) describing the rela-
tive strength of forward (f1) and backward (f2) plane waves in the
Bloch functions at different points on the dispersion relation. Solid
horizontal lines indicate wave vector shifts to the near branches
~labeled a and c!, of the dispersion relation. Dotted horizontal lines
indicate shifts to the far branches~labeled b and d!.
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grating are Bloch functions@28#. For shallow gratings, the
Bloch functionsc are superpositions of plane waves of the
form

c5 f1exp~ iksz!1 f2exp~2 iksz!, ~9!

where the amplitudesf6 are functions of frequency but not
of position. Thus we can represent any Bloch function in
terms of the amplitudesf1 and f2 of the forward and back-
ward plane waves by the unit column vectorf5( f1 , f2).
The ~unnormalized! Bloch functions for various points are
indicated by the column vectors in Fig. 2. Far from the grat-
ing the Bloch functions are approximately plane waves,
while at the band edges they are standing waves. Now typi-
cally the pump, which is detuned from the grating~see Fig.
1!, propagates as a forward plane wave, whereas the signal
occupies a Bloch function determined by its detuningd. If
the wave vector shift needed to achieve phase matching is
small relative tok, the signal is in a Bloch function which is
relatively close to a forward plane wave~branches a or c!
and there is large gain. For a very large wave vector shift to
the distant branches~b or d!, the relevant Bloch function is
virtually a backward plane wave. The pump and signal are
then almost orthogonal and there is negligible gain. For in-
termediate shifts at points near the band edge, the Bloch
functions on both branches are an equal combination of for-
ward and backward plane waves and there is an intermediate
degree of gain@18,19,21,25#. These results can be repre-
sented geometrically if the Bloch vectorf is considered as a
vector in a real two-dimensional space. As a forward plane
wave, the pump mode is represented by the vector (1,0). The
signal is represented by the vectorf corresponding to its
position on the dispersion relation. Then givenDks , if the
signal is detuned for perfect phase matching according to Eq.
~8!, the anglea between the pump vector andf is given by

tana5U Dks
k U. ~10!

So for uDksu!k, a is small and the two vectors are almost
parallel giving large coupling. ForuDksu@k, a&p/2 so the
vectors are almost orthogonal and there is negligible cou-
pling. All the effects in this section play roles in the pulsed
results for parametric amplification as shown in Sec. V.

Note that the description here has made no mention of the
pump power. This is accurate for cw second harmonic gen-
eration in gratings—increasing the pump power increases the
second harmonic intensity in proportion but does not affect
the phase-matching arguments@21,24,25#. For cw parametric
amplification, however, this is an oversimplification. A full
treatment@19# shows that the detuning for maximum signal
amplification depends on the pump power@see Eq.~4!#, and
thus Eq.~8! does not give exactly the detuning for maximum
gain. This effect is not of importance for our purposes here
and the basic manner in which the grating produces wave
vector shifts remains valid.

III. MATHEMATICAL MODEL

We now present the coupled mode equations that com-
prise our model. Recalling that we assume that only the sig-
nal field is tuned to the grating, we write the electric field as

E5@E1exp~ iksz!1E2exp~2 iksz!#exp~2 ivst !

1Pexp@ i ~kpz2vpt !#1Iexp@ i ~kiz2v i t !#1c.c.,

~11!

whereE1 ,E2 ,P,I are the slowly varying amplitudes of the
forward- and backward-moving signal fields, and forward-
moving pump and idler fields~see Fig. 1!. We neglect
backward-moving fields for the pump and idler which expe-
rience negligible reflection from the grating, and write the
refractive index as

n~v!5n̄~v!1DncosS 2pz

d D , ~12!

with n̄(v) the mean index of the grating. Substituting Eqs.
~11! and~12! in the wave equation, we make the undepleted
pump approximation and other standard approximations to
reach the system@19#

1 i
]E1

]z
1

i

vg

]E1

]t
1
1

2

v9

vg

]2E1

]z2
1kE2

1G@2uPu2E11exp~2 iDz!P2I * #50, ~13a!

2 i
]E2

]z
1

i

vg

]E2

]t
1
1

2

v9

vg

]2E2

]z2
1kE112GuPu2E250,

~13b!

1 i
]I

]z
1

i

v i

]I

]t
1
1

2

v i
9

v i

]2I

]z2
1G i@2uPu2I1exp~2 iDz!P2E1* #

50, ~13c!

1 i
]P

]z
1

i

vp

]P

]t
1
1

2

vp
9

vp

]2P

]z2
1GpuPu2P50. ~13d!

Here vg , v i and vp , andG, G i , andGp are the group ve-
locities and nonlinear coefficients at the signal frequency,
idler and pump frequencies, respectively. From hereon, we
adopt the approximation that these quantities are the same
for all three frequencies and drop the subscripts. In particu-
lar, we can assume the group velocities are the same as the
degree of walk off over the length of a grating is negligible
@17#. It is then convenient to rescale the time variable intro-
ducing the quantityT5vgt. The symbolsv9, vp9, andv i9
represent the intrinsic material dispersion at the three fre-
quencies. Finally, the nonlinearity is taken to be positive.

Note that due to the undepleted pump assumption, Eq.
~13d! is uncoupled from the other three. Also,E2 experi-
ences gain only indirectly through the grating coupling to
E1 . We can make an additional simplification by noting that
for a typical grating geometry the second derivative terms
representing intrinsic dispersion are negligible. This is dis-
cussed in detail below.

It is useful for understanding later results to examine
briefly the response of the system in the absence of the grat-
ing. In this case the second derivative terms in Eqs.~13! are
the dominant source of dispersion, and we are not strictly
justified in omitting them. For distances comparable to typi-
cal grating lengths of a few centimeters, however, it is again
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an excellent approximation. Without the grating,E2 plays
no role in the gain process and Eq.~13b! may be dropped.
By a trivial transformation, the remaining three equations
reduce to the well known time-independent case@17# and the
general solution may be written down directly. While the
precise form of the solution is not important here, we note
that the pump propagates with a constant profile such that

uP~z,T!u5 f ~z!, ~14!

wherez5z2T is a position coordinate in the frame moving
with the pump. By analogy with Eq.~4!, it is helpful to
introduce a position-dependent detuning

m~z!5G f 2~z!. ~15!

Further, without loss of generality, we may take the pump
profile f (z) to have its peak atz50 and define the maximum
nonlinear detuning by

mmax[m~0!5G f 2~0!. ~16!

The gain experienced by the signal due to the pump is
given by

g~z!5vA2DG f 2~z!2D2/4. ~17!

The signal is amplified for allz ~if any!, whereg is real. If
g is real andT is large, the signal grows approximately as
uE(z,T)u'exp@g(z)T#. For each pointz on the pump, this
occurs for the range of wave vector mismatch

24m~z!,D,0, ~18!

with the maximum gain at

D522m~z!, ~19!

@cf. Eqs.~3! and~5!#. Note however, from Eq.~17! that for a
particular value ofD, the gain increases monotonically with
pump power. Thus provided the peak detuningmmax is suf-
ficient to produce gain at all@i.e., f 2(z).2D/(4G)#, the
gain is strongest at the peak of the pump. This has the con-
sequence that regardless of the initial relative positions of the
pump and signal, the signal width decreases with time and its
peak becomes coincident with that of the pump. This con-
trasts with the optical pushbroom described in Sec. I in
which the signal sits on the leading edge of the pump. For
D outside the range in Eq.~18!, g is imaginary and the pulses
develop rapid oscillations but do not grow in amplitude.

IV. PARAMETER SPACE

We now set out the parameters to be explored in the next
section. Although we cannot span the entire parameter space
which includes pulse widths, grating strengths, pump pow-
ers, and wave vector mismatch, we point out that the quali-
tative behavior of the system is robust to quite large varia-
tions in parameters and thus the physical arguments behind
the simulations we describe are quite general. Throughout
we use dimensionless units, but shortly we do make the con-
nection to a typical optical fiber geometry to demonstrate
that our choice of parameters is realistic. As Eq.~13d! re-
mains uncoupled from the other coupled mode equations

~13!, the pump field remains unchanged from the grating-free
case. We take the initial pump and signal pulses to have
Gaussian profiles, with a pump width ofwp52 and initial
signal width ofws53. The nonlinear detuning has a peak
strengthmmax52. The pump and signal are initially coinci-
dent and the initial idler field is zero. Propagation occurs for
a timeT515. These parameters are the same for all calcula-
tions. From Sec. III, in the absence of the grating we would
expect gain in the range28524mmax,D,0 with maxi-
mum gain forD524 @see Eqs.~18! and~19!#. We perform
simulations for a range centered around this value such that
216<D<8. As we can expect interesting results when the
coupling strength is comparable to the wave vector mis-
match, for each value ofD we perform one simulation for
each integer value ofk in the range 0–16. The simulations
thus lie in a two dimensionalD–k plane. Anticipating our
results, it is helpful to introduce one further parameter

e522mmax2D, ~20!

which is a measure of how well the system would be phase
matched in the absence of the grating—perfect phase match-
ing corresponds toe50 @cf. Eq. ~19!#. For the peak pump
strengthmmax52 in our system, the weak fields experience
gain in the nongrating case ifueu<4, while the behavior is
oscillatory for ueu.4.

As an example of a real system described by our model
we consider optical fiber gratings. Taking the unit of length
as the centimeter, we find that the time unit is 50 ps, so that
the pump and initial signal widths are 100 ps and 150 ps,
respectively. A propagation time of 750 ps would require a
grating of lengthL5 15220 cm. Gratings at the lower end
of this range are available now. For a mode area of
Aeff520mm2, the peak pump powermmax52 is equivalent
to an actual power of 30 kW or an intensity of
150 GWm22. A mode-locked Nd:YAG laser at 1.064mm
would thus be a suitable pump source. In fact, a similar
Nd:YLF laser with powers in this range was used in recent
experiments to observe grating solitons@10#. The wave vec-
tor mismatch takes the range216 cm21<D<8 cm21. The
dependence ofD on the frequency separationDv for a typi-
cal optical fiber is illustrated in Fig. 3. Each curve givesD as
a function of pump wavelengthlp for a given frequency
separationDv which is marked as a fraction of 1015 s21.
The curves were calculated by solving the eigenvalue equa-
tion for the fiber modes@17,29#. Two significant wavelengths
are indicated. It is also clear thatD changes sign at the zero
dispersion wavelength near 1.27mm. The figure indicates
that the range ofD in our simulations corresponds to fre-
quency separations of the orderDv50.0531015 s21 to
0.2531015 s21. The caseD50 is somewhat problematic as
from Fig. 3, we find this can only occur forDv50 which is
not consistent with a frequency conversion process! In a me-
dium with a more complicated dispersion relation, however,
it is conceivable thatD50 could be achieved for some non-
zero frequency separation and hence we retain this value.
The grating depthk also takes realistic values: it ranges from
k50 ~the ‘‘empty’’ grating!, to k516 cm21, corresponding
to a relatively modest index modulation ofDn5531024.

We can also demonstrate the validity of the approxima-
tions we have made. The pump and idler are assumed to be
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unaffected by the grating in Eqs.~13!. Even for the smallest
frequency separation and strongest grating described above,
the pump is detuned from the grating by greater than 150
vgk. For such a separation, both the reflective and dispersive
properties of the grating are negligible and our assumption is
justified. It is simple to check that spectral broadening of the
pump due to self-phase modulation~SPM! does not signifi-
cantly affect this conclusion over the short propagation
lengths considered@17#. In addition, in our simulations we
neglect the effects of material dispersion described by the
second derivatives in Eqs.~13!. This is easily justified by
consideration of the relative scale lengths over which SPM
and dispersion can play a significant role. The characteristic
nonlinear length@17# LNL51/(GP2)50.5 cm is of the same
order as the pulse length. In contrast, for a typical value of
the group velocity dispersion ofub2u[ud2k/dv2u'20
ps2/km at 1.064mm or 1.55mm with the pulse widthwp

'100 ps, the dispersion length@17# LD[wp
2/ub2u'500

km@LNL ,L, and so the dispersive terms can be safely ne-
glected for propagation lengths of a few centimeters. Note of
course, that the material dispersion gives rise to the mis-
match parameterD. Thus while we neglect dispersion over
the bandwidth of a particular pulse, we do not neglect its
effects over the much larger frequency separation of the dif-
ferent fields.

The simulations were performed using an extension of a
collocation method described in Ref.@30#. This is made pos-
sible by dropping the second derivative terms in Eqs.~13! so
that the characteristics are straight lines, permitting a consid-
erable speed improvement over split-step methods.

V. RESULTS

A. Evolution of fields

We begin our results with a time sequence of the evolving
fields for a typical case. We choose parameters such that the
signal would lie outside the gain band in the absence of the

grating. Figures 4~a!–4~f! show the fields as a function of
position at six different times for the parametersD5216,
k58. For this casee512 @see Eq.~20!#, so that the signal is
well outside the gain band. In this figure and later illustra-
tions of fields, the line styles indicate the fields as follows:
E1—solid line, E2—dot-dashed, P—dotted, and
I—dashed. Note that the horizontal axes shift as time
progresses and that the vertical scales refer to the moduli of
the signal and idler amplitudes. The pump is of course much
more intense than the other low-power fields and is shown at
a different scale. The initial configuration appears in Fig.
4~a! with the pump and forward signalE1 coincident, and
the backward signalE2 and idler set to zero. Figs. 4~b!–4~d!
show the fields atT52.5, T55, andT510, respectively.
The idler begins to be generated by interaction ofE1 and
P while the grating couples energy between the forward and
backward signal. The bulk of the energy in the signal and
idler gradually becomes concentrated on the rear of the
pump. In this period the field structures are complicated and
change rapidly with time, and only modest growth occurs.
By T512.5 @Fig. 4~e!#, substantial growth has occurred and
all three weak fields are localized on the rear of the pump
and have a regular single peaked shape. As propagation con-
tinues toT515 @Fig. 4~f!#, the signal and idler fields expe-
rience further growth but the field profiles remain virtually
unchanged. For comparison, Fig. 5 shows the fields at
T515 in the grating-free case. Both the forward signal and
idler develop oscillatory features with no gain while the
backward signal vanishes as there is now no coupling be-
tween the two signal fields.

In Fig. 6 we show the final fields atT515 for a second
simulation withD58, k514, ande5212 @16#. Thus the
system is now on the opposite side of the grating-free gain
band. The behavior is similar in this case. At early times the
weak fields become highly irregular and complicated, but
eventually adopt simple peaked forms on the rear of the
pump where they continue to grow uniformly. Note that the
gain in this case is larger still than in Fig. 4 and that the
signal fieldsE6 are somewhat narrower than in the first case.
We discuss the origins of these differences in Sec. VI. In
both simulations, however, the location of the weak fields on
the rear of the pump contrasts with growth in the nongrating
case, for which the signal and idler always move to the cen-
ter of the pump as discussed in Sec. III.

If the parameters are chosen such that the signal liesin-
sidethe gain band for the grating-free case, we observe even
stronger amplification than in the cases just described and the
signal again appears on the rear of the pump. The appearance
of gain in this case is of course less striking than in the two
out of gain band examples.

To see how the gain develops, we show the total energy in
the signal and idler fields as a function of time for these two
simulations in Fig. 7~a! (D5216, k58) and Fig. 7~b!
(D58, k514). For both cases, we find an initial period
where energy couples back and forth between the two signal
fields but the total energy in the grating does not change
significantly. The oscillations occur because the signal is ini-
tially chosen to have no energy in the backward mode. At
later times, the oscillations die away and the energy increases
almost exponentially with time. Comparing Fig. 7a with the
corresponding time sequence of fields in Fig. 4 indicates that

FIG. 3. Wave vector mismatchD as a function oflp . Each
curve is marked with a frequency separationDv measured in
1015 s21.
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FIG. 4. ~a!–~f! Time sequence of pulse evolution forD5216, k58. The fields areE1 ~solid!, E2 ~dash-dot!, I ~dash!, P ~dotted!.
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the onset of growth occurs as the field structures begin to
become simpler and concentrated at the rear of the pump.
We have found this to be true in all simulations. Figure 7
also shows that the fields atT515 are smaller in Fig. 4~f!
than in Fig. 6 because the amplification both begins later and
occurs more slowly in the first case than in the second.

The examples in Figs. 4 and 6 are typical of a very broad
range of parameters. The initial pulse evolution can be
highly involved but with sufficient time, the weak fields al-
ways experience growth and become located on the rear of
the pump regardless of the relative sizes ofD andk. For all
the simulations, however, therateof growth and detail of the
pulseshapesdo depend on the parametersk andD and for
D@k the initial period before amplification begins may be
quite long. In this regime, the parametric amplification can
be so poorly phase matched that it essentially plays no role

and pulse-shaping effects such as the optical pushbroom de-
scribed in Sec. I which rely only on XPM can operate
@14,15#. Before considering the detailed dependence of the
system on the mismatch and grating strength, we first de-
scribe the basic process that allows gain for such a broad
range of parameters.

B. Mechanism for gain

The gain of course arises by a similar argument to that
described for the cw case in Sec. II. There, the gain was
enhanced for frequencies at which the grating introduced a
wave vector shift compensating for the original mismatch
D. In the pulsed case, we can expect self and cross-phase
modulation to shift the frequencies of the different pulses
over time so that similar effects may occur even if the initial
frequencies are not phase matched by the grating. It is natu-
ral to suppose that the gain is largest if the signal spectrum
moves to a point on the grating dispersion relation at which

FIG. 5. Fields atT515 for D58, k50. This plot should be
compared with the equivalent time in the presence of the grating
shown in Fig. 4~f!.

FIG. 6. Fields atT515 for a simulation withD58, k514. The
fields areE1 ~solid!, E2 ~dash-dot!, I ~dash!, P ~dotted!.

FIG. 7. Energy in fields as a function of time for~a! the simu-
lation in Fig. 4 (D5216, k58) and~b! the simulation in Fig. 6
(D58, k514). Line styles areE1 ~solid!, E2 ~dash-dot! and I
~dash!.
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the signal wave vector is shifted to the center of the gain
band in the grating-free case. In other words, we might ex-
pect the signal to experience maximum gain if the grating
induced wave vector shift produces an effective mismatch

Deff[D1Dks522mmax, ~21!

or equivalently, if

Dks5e ~22!

@see Eqs.~19! and ~20!#. In fact, as the weak fields become
located on the rear of the pump@see Fig. 4~f!# rather than at
the peak we should consider the strength of the pump at the
peak of the signal. We thus introduce one further parameter:
the pump-induced nonlinear detuning at the peak of the sig-
nal given by@see Eq.~4!#

ms~T!5G f 2„zs~T!2T…, ~23!

wherezs(T) is the position of the signal peak at timeT. It is
clear thatms(T)<mmax. Our final prediction then is that the
gain should be maximized ifDeff'22ms .

These arguments can be confirmed by examining the evo-
lution of the frequencies of the different pulses. The signal
detuning defined in Eq.~6! is determined numerically for
each signal field by the expressions

d̂652
]

]T
f6~z,T!, ~24!

where the instantaneous phasesf6(z,T) are defined by

E6~z,T!5uE6~z,T!uexp@ if6~z,T!#. ~25!

By analogy with Eqs.~24! and~25!, we also define detun-
ings for the idlerd̂ i and pumpd̂p that represent deviations
from the center frequenciesv i andvp @see Eq.~11!#. It is
also useful to consider the local wave numbers of the fields
defined as

qj5
]

]z
f j~z,T!, ~26!

where j runs over the symbols1, 2, i andp for the signal,
pump and idler fields, respectively.

Figure 8 shows the frequency detunings and wave vectors
for all four fields as a function of time for the simulation of
Fig. 4. All these parameters are measured at the peak of the
forward signal fieldE1 . The detunings are shown corrected
for the effects of SPM and XPM by the pump—the nonlinear
index change induced by the pump shifts the band gap down
in frequency~for a positive nonlinearity!—and are defined
for j51,2,i ,p by

d j5 d̂ j1s jms~ t !, ~27!

where the caret denotes the directly measured detunings and
s j52 for j51,2,i and sp51, indicating that XPM in-
duces a shift twice as large as SPM@6# @see Eq.~6!#.

We are now able to see how the frequency evolution sup-
ports our argument explaining gain. We stress again that the
parameters are measured at the peak of the signal field

E1 . In Fig. 8, the pump detuning and wave number increase
monotonically with time. This is because on the rear of the
pump~where the signal peak is found!, SPM induces a posi-
tive frequency shift. The detuning and wave number are ex-
actly coincident (dp5qp) as the pump obeys the uniform
medium dispersion relationvp5ckp /n̄(vp). The idler
shows similar behavior: in the initial period of complicated
dynamics,d i and qi have no simple relationship, but once
strong amplification begins, these two parameters also be-
come coincident since the idler obeys the uniform medium
dispersion relation as well. The signal fields display very
different behavior. In the initial period when energy oscil-
lates betweenE1 andE2 , the signal detunings also oscillate
wildly. In this regime, the simple definition of detuning as
the time derivative of the phase of each field is not well
defined. However, at aboutT56.5, when the field oscilla-
tions die away and the gain begins, we find that both the
detuning and wave vectors parameters become constant and
remain so for the rest of the simulation. Moreover, from
about the same time, we haved1'd2 andq1'q2 due to
the strong coupling of the two signal fields by the grating.
Note thatq1 andq2 represent changes in the absolute wave
vectors ofE1 andE2 , rather than the absolute wave vectors
themselves, so that although they refer to waves propagating
in opposite directions, they may have the same sign. The
behavior of the signal frequency and wave vectors strongly
suggest that the onset of gain is related to the signal param-
eters nearing particular values. In contrast to the pump and
idler, the signal detunings and wave vectors do not become
coincident due to the dispersion of the grating. Noting in Fig.
8 that the signal detunings become fixed at a negative value
and the wave vectors become fixed at a positive value, we
see that the signal lies on the bottom right branch~d! of the
dispersion relation in Fig. 2 and hence that the induced wave
vector shift satisfies 0,k,Dks . Recall from the first para-
graph of Sec. VA that for this case,k58 and the ‘‘desired’’

FIG. 8. Detuning and wave number of fields as a function of
time for the time sequence in Fig. 4. Line styles indicate the same
fields as in Fig. 4.
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shift is e512.k. Thus the signal spectrum is in the correct
quadrant of the dispersion relation to satisfy Eq.~22! and
achieve phase matching.

This argument is quantitatively confirmed in Fig. 9 for the
simulation corresponding to Fig. 6 where we take into ac-
count the location of the signal on the rear of the probe@see
discussion following Eq.~22!#. The solid line shows the non-
linear detuning at the signal peakn522ms(t). We expect
gain when the effective wave vectorDeff'22Gms(t). Now
in the uniform medium with a constant phase velocity, we
would have d15q1 , so with the grating included,
q12d1 represents the grating-induced wave vector shift
Dks . Therefore we haveDeff5D1(q12d1). This quantity
is shown with the dotted line. The convergence of the two
lines at about the same time as gain is observed in Fig. 7~b!
is a dramatic confirmation that the onset of gain is indeed
associated with phase matching mediated by the grating.

We have stated above that the shift in detuning allowing
growth is produced by XPM. On the rear edge of the pump
however, XPM alone should generate positive frequency
shifts whereas for the case in Fig. 1 the frequency shifts to
negative values. In fact in the initial period of evolution be-
fore gain begins, the combined action of the nonlinear inter-
actions and the grating leads to a very complicated frequency
profile across the signal pulses. With sufficient time, fre-
quencies allowing phase matching appear and are amplified.
As growth occurs only at those frequencies, they quickly
grow to dominate the spectrum.

The two simulations we have discussed demonstrate the
signal spectrum moving to a point where gain is enhanced by
grating-assisted phase matching. From many other examples,
we have found this to be a very general behavior. Strong
gain invariably occurs when the signal detuning and wave
vector can compensate the initial mismatche. While the ac-
curacy of this picture is not always as striking as for the case
shown in Fig. 9, the variation in the frequency parameters
with D andk show trends that confirm its correctness. For
example, consider the behavior as we varyk if e.0: Our

simple picture would predict that ask increases, the value of
q6 for optimum phase matching would increase smoothly
from negative values to positive values withq650 when
k5e. Performing the simulations we typically find that
while q6 would not be zero exactly whenk5e, this is a
reasonable approximation and the trend ofq6 increasing
with k is certainly obeyed. Given the complexity of the sys-
tem, it is not surprising that we do not find perfect agreement
with essentially cw arguments.

We have remarked above that for parameters placing the
systeminside the gain band, amplification also occurs. Fur-
ther, if the signal is initially to one side of the gain band, the
effects described above for the out of band cases now act to
move the signal towards the center of the gain band where
the amplification is largest.

VI. DEPENDENCE ON PARAMETERS

A. Rate of gain

Having established how the grating can facilitate amplifi-
cation outside the grating-free gain band, we now turn to the
detailed dependence of the pulse evolution on the system
parametersk andD. The most basic property is the rate at
which gain occurs. In Fig. 10 we show the total energy in the
signal field as a function of time for a range of different
grating strengths and two wave vector mismatches—one far
outside the grating-free gain band withD58 @Fig. 10~a!#,
and the other at the center of the gain band withD524
@Fig. 10~b!#. For each mismatch, the total energy is plotted
for 10 values ofk indicated by the labels on each figure and
by the line styles described in the caption to Fig. 10. The
basic appearance of the figures is as we would expect. For
each value ofk, there is an initial period in which the signal
energy is unchanged followed by a steady increase. We saw
in Sec. VB that the initial period corresponds to the signal
frequency and wave vector being shifted from the center of
the photonic band gap to values at which the amplification is
phase matched. Note that for some values ofk the initial
period is negligible while for others it occupies the full time
of the simulation. Moreover, the dependence of the initial
period onk is strikingly different for outside the gain band
@Fig. 10~a!# compared to inside the gain band@Fig. 10~b!#.

Discussing first the out of gain band case, Fig. 10~a!
shows two obvious properties: both the rate of gain~given by
the slope of the curves!, and the time at which gain begins
are functions ofk. Considering the rate of gain, we observe
that during the period of steady growth, the slope increases
monotonically withk. This is simply interpreted in terms of
the coupling of Bloch functions as described in Sec. II. Re-
placingDks by e in Eq. ~10!, we find the degree of overlap
between the pump and the Bloch function occupied by the
signal increases withk and thus so does the rate of gain.
Turning to the time at which the gain starts to act, we find a
quite different dependence onk. Amplification begins al-
most immediately fork510, 12, and 14, while there are
initial periods without gain of varying length fork,10 and
k.14. In fact we find both for this case ofD58 and in
general, that the initial time before gain begins increases
with uk2ueuu. We can understand this from Eq.~8! which
gives the detuning for perfect phase matching in terms ofk
and the wave vector shiftDks . In the present case we have

FIG. 9. Effective wave number mismatchDeff5D1Dks and
n522GuP(zmax)u2 as a function of time for simulation with
D58, k514 ~Fig. 6!.
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Dks5e. The wave vector shift needed for phase matching is
of courseDks5e @Eq. ~22!#. Equation ~8! shows that the
detuning for phase matching occurs at the band edge
@d52 sgn(e)k#, if k5ueu, and moves monotonically away
from the band edge asuk2ueuu increases~see Fig. 2!. The
time taken for the signal frequency to be shifted from the
center of the band gap to the correct detuning for phase
matching then must also increase withuk2ueuu, explaining
the trend in the length of the initial period without gain.
These trends in the rate of gain and time of onset are not
peculiar to the parameters illustrated and are observed for all
values ofD outside the gain band.

Quite different behavior is observed forD524 at the
center of the gain band@Fig. 10~b!#. The rate of gain now
decreaseswith increasingk while the initial delay period
increases monotonically withk. The gain is fastest and be-

gins immediately when the grating strength vanishes
(k50). These effects are a consequence of the fact that the
signal is already optimally phase matched in the absence of
the grating. Whenk is nonzero, the wave vector shifts in-
duced by the gratingworsenthe phase matching, decreasing
the gain rate. As the grating strength increases, the phase
matching becomes ever worse so that the gain rate falls with
increasingk. In fact for kÞ0 with D524, the pulse evo-
lution is quite involved. As there is no frequency allowing
perfect phase matching, there is no preferred frequency at
which the signal should settle. Further the pulse shape does
not become regular and single peaked in contrast to the re-
sults shown up till now. Far from the band gap, the small
wave vector shift~to the branches marked a and c in Fig. 2!
tends to zero, so the perturbation to the phase matching is
less severe at large detunings. Near the center of the gain
band therefore, amplification therefore tends to occur at large
detunings. Ask increases, however, the band gap broadens
and the signal detuning must be shifted by ever large
amounts to reduce the magnitude of the grating induced
wave vector shift. The time required to produce the detuning
increases with its size, explaining the increase in the initial
delay withk. Indeed fork.12, this time is longer than the
simulation timeT515 @see Fig. 7~b!#. Note that this complex
behavior occurs only forD'24. For other mismatches in-
side the gain band, the system operates similarly to the out of
gain band case, and the dynamics are correspondingly sim-
pler.

As is suggested by Figs. 10~a! and 10~b!, the maximum
gain observed in all our simulations is for the case of perfect
phase matching in the absence of the grating (D524,
k50). This is simply because for all other cases, the grating
is not directly connected to the parametric amplification pro-
cess, but only acts to improve the phase matching—a grating
cannot improve on perfect phase matching. The cw response
of a finite grating differs from the present pulsed analysis in
this respect—in the cw system there are many parameter
values for which the output is larger with the grating than in
a perfectly phase-matched medium of the same length@19#.
This occurs because finite gratings can store large amounts
of energy at Fabry-Pe´rot resonances@31#. Light tuned to
such a resonance experiences a resonantly enhanced gain,
larger than would occur with ideal phase matching in a uni-
form medium@19#.

The Bloch functions occupied by the signal play another
role in the gain process—determining the relative amplitudes
of the two signal fields. Observe in Fig. 4~f! that the forward
signal field is smaller than the backward field, while this
situation is reversed in Fig. 6. This is simply a reflection of
the relative contribution of forward and backward plane
waves in the Bloch function as indicated by the vectors in
Fig. 2 @see Eq.~9!#. In general, simulations show that as the
ratio e/k varies, the relative size ofE1 and E2 varies in
close correspondence to the content of the Bloch function at
the point on the dispersion relation for optimum phase
matching. Thus fore/k!1, E1 is the dominant field in the
signal, whereas fore/k@1, E2 dominates.

B. Pulse widths

The final characteristic of the pulse amplification we con-
sider is the width of the signal and idler pulses. As pointed

FIG. 10. Total signal energy as a function of time for varying
k. ~a! D58, ~b! D524. The curves are labeled byk which is also
indicated by the line style as follows:k50 ~solid!, 1 ~dot!, 2 ~short
dash!, 4 ~long dash!, 6 ~dot-short dash!, 8 ~dot-long dash!, 10 ~short
dash-long dash!, 12 ~solid!, 14 ~dot!, 16 ~short dash!.
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out in Sec. III, if the signal lies in the gain band in the
absence of the grating, the signal narrows indefinitely, be-
coming ever more tightly confined around the peak of the
pump where the gain is largest. With the grating included,
the signal narrows indefinitely if it lies inside the gain band.
Outside the gain band, however, the pulse widths settle at
constant values once the amplification begins.

The final width of the idler pulse shows relatively little
variation amongst the simulations. The widths of the signal
fields, however, vary significantly with the simulation
parameters—compare the long tailedE1 and E2 fields in
Fig. 4~f! with the well-confined fields in Fig. 6. The variation
in signal width shows two clear trends: it decreases with
increasingk and increases with increasinge. Both these
trends are closely linked to the group velocity of the signal as
we now demonstrate. The pump can be thought of as ‘‘de-
positing’’ energy into the signal just to the rear of the pump
peak. If the signal group velocity is close to the pump veloc-
ity, energy already in the signal does not significantly fall
behind the pump, and the signal remains well confined. If the
signal velocity is significantly less than that of the pump,
energy already in the signal falls behind the pump producing
an extended tail. Hence the signal pulse width should de-
crease with increasing group velocity. Note that in this argu-
ment the sign of the signal velocity is important—a negative
large group velocity would cause the signal energy to
quickly fall behind the pump and lead to a very broad pulse.

Now the group velocity of the pulse is given by the slope
of the dispersion relation in Fig. 2, vanishing at the band
edges and approaching the speed of light at large detunings.
Once the gain is established, we expect the signal detuning to
be approximately given by Eq.~8! with ks5e. For this de-
tuning, the group velocity is given by

v5
k22e2

k21e2
. ~28!

Note in particular, that fork,ueu, the signal occupies one of
the branches~b or d! and has a group velocity of opposite
sign to the pump. Equation~28! shows that the signal veloc-
ity increases monotonically withk, which by the argument
of the previous paragraph shows that the signal width should
decrease with increasingk. Similarly, Eq. ~28! shows that
fixing k, the group velocity should decrease, and thus the
pulse width increase with increasinge. We have observed
both these trends in our simulations. The examples in Figs.
4~f! and 6 are consistent with this picture. For Fig. 4~f! the
signal lies on the d branch~see Sec. VB!, where the signal
group velocity is negative and the width is large. In contrast,
in Fig. 6 where the signal field lies on the a branch, the group
velocity is positive and the pulse is narrow. These arguments
also explain the fact that the fields grow on the trailing edge
of the pump—unless perfectly phase matched in the absence
of the grating, the signal group velocity must be smaller than
the pump velocity and hence the signal lags the pump. The
idler can only grow in company with the signal and thus is
also found on the rear of the pump. Note the similarity of
these arguments with the explanation for the relative rates of
gain in Sec. VIA. In fact, as the rate of gain also increases
with the overlap between the pump and signal Bloch func-

tion, we can expect strong gain to be associated with narrow
signal pulses and vice versa—consistent with Figs. 4 and 6.

VII. DISCUSSION AND CONCLUSION

A. Self-locking gain

The principal result of this paper is the prediction of am-
plification of the signal at frequencies that lie outside the
gain band in the absence of the grating. Of course, similar
results are known for cw second harmonic generation and
parametric amplification as discussed in Sec. II. There is,
however, a striking difference between these problems and
the present case of pulsed parametric amplification. In the cw
problems, the gain is enhanced only if the input signal fre-
quency is tuned to the point on the grating dispersion relation
at which phase matching occurs. In the pulsed regime, this
restriction does not apply—the input signal need only lie in
the vicinity of the Bragg resonance. XPM generates new
frequencies until part of the signal spectrum lies at the phase
matched detuning and these frequencies are then amplified.
Thus in the pulsed case, the gain may be said to ‘‘self-tune’’
or ‘‘self-lock.’’ While this is an appealing effect in its own
right, it also has important consequences experimentally. Ex-
periments in the cw regime would require precise tuning of
the input signal~in fiber gratings typically to an accuracy of
much less than one nanometer!, especially if it is desired to
hit a narrow Fabry-Pe´rot resonance. Pulsed experiments
should be simpler in this regard, because the signal fre-
quency may be chosen anywhere near the band gap. As the
position of the Bragg resonance shifts with environmental
factors such as temperature and strain, the self-locking could
prove most useful.

In fact, the same effect could in theory occur without a
grating—in a uniform medium, XPM can still shift the signal
and idler around thematerialdispersion relation until phase
matching occurs. The difference is one of scale. The grating
dispersion is so strong that the error in phase matching can
be accommodated by a shift in the signal detuning of the
order ofvgk, corresponding to a wavelength shift of perhaps
less than a nanometer. In the absence of the grating, the
signal wavelength would need to shift by many tens of na-
nometers to compensate for the same mismatch. This re-
quires much longer propagation distances and makes for a
much less striking effect.

B. Regime of the pushbroom

The self-locking idea leads to another important issue.
From an experimental point of view, the geometry described
in this paper is identical to that in our earlier work on the
optical pushbroom@14,15,32#—a weak pulse and a strong
pulse are launched into a grating and allowed to interact. In
the pushbroom case, the frequency separationDv is as-
sumed to be large, so that the wave vector mismatchD is
also large and parametric amplification does not play a role.
In this regime, the signal shows quite different behavior.
Though it is not amplified, by the combined action of XPM
and grating dispersion it is substantially compressed and
swept out of the grating on theleadingedge of the pump. In
this paper, however, we have shown that the inclusion of the
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grating allows gain even whenD is quite large. In what
regime then, does the existing theory describing the push
broom, which neglects parametric amplification, actually ap-
ply? Is it not true that regardless of the size of the mismatch
parameterD, and therefore of the frequency separation
Dv, we need only wait for the signal to be shifted to the
phase-matched detuning before gain proceeds and swamps
the compressive effects seen in the pushbroom?

The answer~which is happily negative!, once more lies in
the Bloch functions. For largeDv implying ~normally! large
D@k, phase matching occurs on one of the distant branches
~b or d! of the dispersion relation, and the longitudinal mode
overlap between the pump and signal is so poor that the gain
is negligible. Moreover, asD increases, it takes ever longer
for the signal to be shifted to the phase-matched frequency in
the first place, leaving aside the low gain when phase match-
ing occurs. The final question is then exactly how large must
D be before we can neglect the effects of parametric ampli-
fication. It is difficult to give a complete answer to this ques-
tion, but the following criterion seems a reasonable estimate
for order of magnitude purposes. Equation~10! gives the
‘‘angle’’ between the Bloch vectors representing the pump
and signal. We suppose that the gain is negligible if the
overlap is so small that cosa&0.1. Then Eq.~10! immedi-
ately gives the condition that parametric amplification can be
neglected ifue/ku*10 @see Eq.~20!#. We show an example
in Fig. 11. This figure shows the intensity of the fields at the
end of a simulation with the same parameters used in Figs. 4
and 6 but with coupling strengthk51 and D53. Thus
ue/ku is only'4.7. However, the probe is substantially com-
pressed and lies on the leading edge of the pump, as would
be expected in the pushbroom regime@14,15#. The peak in-
tensity of the idler is a factor 10 smaller than the peak signal
intensity. Repeating the simulation without including para-
metric amplification produces a similar plot with no idler
field. Thus forD yet larger, we should expect the idler field
to be still smaller than in Fig. 11 and the existing pushbroom

theory to be highly accurate. This is confirmed by other
simulations. Finally, to give a sense of scale let us find the
frequency separation that would be required to haveD.3
for the experimental fiber parameters discussed in Sec. IV.
There we chose the unit of length as the centimeter so that
we seek D53 cm21. With a pump wavelength of
lp51.064 mm, from Fig. 3 we obtain a frequency separa-
tion of Dv'0.0731015 s21 or a wavelength separation of
about 30 nm.

C. Other issues

We have assumed throughout that the signal is tuned to
the grating. For several reasons it might be preferable to have
the idler close to the Bragg resonance instead. The action of
the grating in phase matching would remain the same, but
the role of the signal and idler fields would be reversed. For
example, with our choice of the signal being close to reso-
nance, the energy in the idler often exceeds that in the two
signal fields, as can be seen in Fig. 7. Further, the idler is
always narrower than the signal fields because its group ve-
locity is not reduced by the presence of the grating~see Sec.
VIB !. Finally, whereas the signal would be partially re-
flected at the rear of the grating due to an impedance mis-
match between the grating and the surrounding uniform me-
dium, the idler would be completely coupled into the
uniform medium. By making the idler resonant with the grat-
ing, these features would then become properties of the sig-
nal instead.

Throughout this paper, we have used an undepleted pump
approximation. For some parameters, the gain can be so
large that this approximation would begin to fail unless the
initial signal amplitude was quite weak. An example is the
simulation represented in Fig. 7~a!, where the signal energy
increases by nine orders of magnitude, and within the gain
band the growth can be even more rapid. While it would be
elementary to include pump depletion in our model, we have
instead concentrated on the basic mechanism underlying the
appearance of amplification outside the gain band.

A related issue is the problem of stimulated Raman scat-
tering ~SRS! of the pump in optical fibers. For powers of the
order of 30 kW, SRS can be expected to be important over
the typical length of fiber gratings@17#. SRS should intro-
duce two main effects to the system. It clearly acts as a
nonlinear loss to the pump. This effect would reduce the gain
rate but is unlikely to qualitatively change the behavior.
More significantly, the energy extracted from the pump by
SRS appears as a Stokes wave over a broadband of longer
wavelengths. For a pump wavelength of 1mm, the peak of
the Stokes wave spectrum is shifted by about 50 nm. This is
comparable to the wavelength separations considered in this
paper. Hence, SRS may deposit a significant fraction of the
pump energy into the signal or idler, and should be included
in a complete treatment. The present study, while neglecting
SRS clearly elucidates the influence of the grating on para-
metric amplification and provides insight which would be
much harder to extract from a model which included SRS
from the beginning. In addition, SRS should be much less
important in other geometries such as semiconductor grat-
ings, for which the Raman gain band is usually much nar-
rower than in glass. In that case, one could select a signal

FIG. 11. Field intensities atT525 for a simulation withk51,
D53.5, mmax52. Line styles areuE1u2 ~solid!, uE2u2 ~dash-dot!,
uI u2 ~dash!, and uPu2 ~dotted!. As usual, the pump is not shown to
scale.
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frequency that was far from the generated Stokes wave.
The inclusion of a grating in a parametric amplification

system profoundly changes the response of the system. Gain
is permitted over a much wider range of parameters than in
the corresponding uniform medium and produces large am-
plitude well-shaped pulses. The experimental design con-
straints needed to produce the effects described in this paper
are quite demanding but as discussed in Sec. III, current
optical fiber gratings with a high-powered Nd:YAG source
should be sufficient to allow observation of grating-assisted
amplification. The pulsed case has two clear advantages over
experiments in the cw regime. First, there is the basic advan-

tage that high pump powers are more easily produced in
short pulses than for long periods. Moreover, in the cw re-
gime, the system shows very fine spectral features due to
narrow Fabry-Pe´rot resonances@19# which may complicate
experiments. These narrow fringes are absent in the pulsed
case which seems a promising system for experimentation.
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