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Parametric amplification of short pulses in optical fiber Bragg gratings
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We studyy(® parametric amplification of a weak signal pulse tuned to a Bragg grating through a series of
numerical simulations. These simulations demonstrate that gratings permit strong signal amplification for large
wave vector mismatches between pump, signal, and idler, even though gain would be prohibited in the
corresponding uniform medium. The enhanced gain is explained in terms of a shift in the signal wave vector
due to the strong dispersion induced by the grating, an effect which is well known from other frequency
conversion processes. Fgf®) parametric amplification, the pulsed regime introduces several new effects,
many of which are explained by simple arguments based on the cw dispersion relation of the grating. Notably,
the gain exhibits a “self-locking” behavior, in that there is considerable freedom in the input frequency of the
signal.[S1063-651X96)06909-7

PACS numbd(s): 42.65.Ky, 42.65.Hw

[. INTRODUCTION the pump—the so-called “optical pushbroom.” The fre-
guency separation is required to be large to guarantee that the
The study of short optical pulses in Bragg gratings ha®nly nonlinear interaction is XPM.
been dominated by two broad areas. In the linear regime, one Recently, we have studied a more complex problem in
of the main themes has been that of dispersion compensatigkhich the geometry is unchanged but we relax the condition
in chirped optical fiber Bragg gratings for long-haul commu-©f large frequency separation between the pump and signal
nications. Proposed some time afgd, this has now been [16]. This allows the nonlinear process of four wave mixing
clearly demonstratef2—4]. In the nonlinear regime, theo- ©OF parametric amplification to occur according to the relation
retical studies of switchinf] and gap solitons occupy most @p+ wp= ws+w;, in which two pump photons of frequency
of a now considerable literaturesee Ref[6] for a recent @p are converted to one photon each at the signaand
review). Behind this nonlinear work is the fundamental ideaidler w; frequencies. The frequencies are separated by the
that light tuned close to the Bragg resonance, which would@uantity
be reflected at low intensities, may at sufficiently high inten-
sities tune itself out of the band gap and thus be transmitted, Av=ws—w,=0p— ;. 1)
exhibiting solitonlike propagation. Both bistability7—9],
and gap solitons or “Bragg grating soliton§10] have now  Note that although the fields are now more closely spaced in
been observed experimentally. frequency, we still assume that only the signal frequency is
An area of nonlinear processes in Bragg gratings that hagffected by the gratingsee Fig. 1. We demonstrate below

received much less attention is the interaction between a
strong pump pulse and a weak signal pulse inside a grating.
Several authors have considered pump-induced switching of
a cw signal by a pump detuned from the gratjid,12 and
the concept has received a first demonstrafi8]j. In other
work, we treated the case where the pump and signal are
both pulses and are widely separated in frequgriey15.
Whereas the signal is tuned to the grating and travels with a
group velocity much less than the speed of light, the pump
propagates unimpeded at the speed of light in the medium.
Under these conditions, it was found that although if both the
pump and signal are weak, the pump overtakes and passes
through the signal; a high intensity pump produces substan- Acw
tial reshaping of the signal. Through cross-phase modulation
(XPM), the signal is shifted to lower frequencies on the grat-
ing dispersion relation where the group velocity is larger,
and in addition the signal becomes chirped. Thus the average i
frequency shift causes the signal to accelerate and keep up
with the pump, while the chirp and grating dispersion lead to
compression of the signal. The net effect is to see the com- FIG. 1. Schematic of the frequencies involved in the parametric
pressed signal swept out of the grating on the leading edge ainplification system.
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that such a situation indeed occurs in optical fibers. The relaapproximation, the cw problem for SHG is described by a
tive efficiency of the process is governed by the wave vectodriven linear system. Hence, pulsed SHG in gratings can be

mismatch parameter reduced to a Fourier superposition of the cw response and we
would not expect qualitatively new results. In contrast, as our
A=kt ki—2k,, (2)  earlier work showed16], new effects are found with pulsed

X parametric amplification. Notably, the gain becomes

wherekg,k; ,k, are the wave vectors corresponding to the Self-locking”—the input signal need not be tuned to the
frequenciesos, ; ,w, . In the absence of the grating, ampli- frequency at which the grating produces pha_s;e matchlng:
fication of the signal only occurs for a limited range of the Rather, cross-phas_e modulation ensures that this frequency is
mismatchA, dependent on the pump pow7]. Although ~ 9enerated automatically. _

the detailed dynamics when the grating is included are highly Including general time dependence into the problem of
involved, in our previous work we found very general behav-Parametric amplification in Bragg gratings leads to a system
ior for a wide range of parametef&6]. In short, the inclu- that is resistant to analyur; techniques; note fqr instance that
sion of the grating allows amplification of the signal andWe have no natural nonlinear modes on which to build a
idler by the pump for a large range of parameters that wouldPerturbation theory as has been done for problems of per-
not permit growth without the grating. Provididgis not too  turbed gap solitong27]. In our previous work thereford 6],
large, the purely compressive effect seen in the optical pushve Studied the system through numerical simulations. We
broom [14,15 is swamped by amplification of the signal. continue this approach |n.th|s paper, but in much greater
Moreover, in contrast to the optical pushbroom where thel€tail. We begin by showing further examples of the en-

signal sits on the leading edge of the pump pulse, whehancement of the signal gain to illustrate the wide variety of
parametric amplification is able to operate, the signal peParameters for which it occurs. We then demonstrate that the

comes located on the trailing edge of the pump. enhancement is indeed a result of grating-assisted phase

The enhancement in gain is a result of "grating-assistednatChi”g- We also explore and explain trends in seyeral as-
phase matching,” an effect which is well known for fre- PECts of Fhe gain as t_he system parameters are vgrled. These
quency conversion processes in the continuous wawe aspects include thg time taken_for the gain to begin, the rate
regime[18—25. Adding a grating introduces strong disper- of gain, {i_nd t_he width of the signal and idler pulses during
sion near the Bragg resonance so that the wave vector of affje amplification. Although the parameter space for the prob-
field tuned to the grating varies much more rapidly with|€m is very large, we nevertheless provide physical explana-
frequency than in the uniform medium. The mismatcthus ~ tions for virtually all the _qughtanve features we observe.
changes and so the grating influences the efficiency of th&hus although fully quantitative results must be found from
frequency conversion. In fact, for particular detunings fromcOmplete simulations, a sound physical knowledge of this
the resonance, efficient conversion may become possible b&yStem is still attainable. _
tween frequencies that would not be phase matched in the The remainder of the paper is structured as follows. In
uniform medium. Many frequency conversion processes are€C- |l we present the relevant features of previous work on
governed by phase matching conditions and hence a grati frequency conversion in gratings. Our fully time-
may enhance any of these processes. Several authors ha@Pendent model is presented in Sec. Ill where we recall the
studied the influence of a grating on cw second harmoni@€havior of pulses undergoing parametric amplification in
generation(SHG) through aX(z) nonlinearity [20—-25. In uniform media, while in Sec. IV we map .ou_t the parameter
general, one finds enhancement of the harmonic for frequer?Pace to be explored when the grating is included. Sec. V
cies on one side of the Bragg resonance where the grati ntalns the results c_)f our smyla"uons and demonstratlons of
achieves phase matching. On the other side of the Bra e acthn of the grating in achlevmg phasg matchmg._ln Sec.
resonance, the grating worsens the phase matching and thefeWe discuss a number of trends in physical properties ob-
is minimal outpuf21,25. These predictions have been veri- served in the smulaﬂons_. Finally in Sec. VII we briefly dis-
fied experimentally for SHG in semiconductor gratifigs]. ~ CUSS some additional points.

A similar enhancement in gain is predicted to occur for cw

parametric amplification with ay® nonlinearity [19], Il. PROPERTIES OF BRAGG-ASSISTED

though with several complications over the SHG problem: ~CONTINUOUS WAVE FREQUENCY CONVERSION

through XPM 'Fhe signal_ experiences a nonlinear change in \vao now summarize the properties of cw parametric am-
thg refractwei index which causes -the enhgncement. _Of thﬁliﬁcation in gratings[19], which remain relevant in the
gain to be shifted to lower frequenciesssuming a positive ) 1seq case. We begin, however, with the simpler case of
nonlinearity. Moreover, unlike the SHG case, the degree O_fﬁarametric amplification in a uniform medium.

enhancement depends on the input pump power. Finally, i

the absence of the gratind7], parametric gain occurs over a
range of values oA, whereas in SHG, the relevant mismatch
parameter is required to vanish identically to achieve phase The mismatch parametekx is a linear property of the
matching. This difference is mirrored when a grating is in-medium that depends on the intrinsic mate@hd wave-
cluded. guide dispersion of the medium. On the other hand, the

Whereas the continuous wave regime of frequency conphase-matching condition required for gain depends on the
version in gratings has attracted much attention, as far as wdetails of the nonlinear interaction. For parametric amplifi-
are aware our previous papeee Ref[15]) is the only study  cation with ay® nonlinearity in the absence of the grating
that has considered short pulses. In the undepleted punid7], the signal experiences gain if

A. Grating-free parametric amplification
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course does not have constant slope over all frequencies—it
curves due to the dispersion which gives rise to the wave
vector mismatch in the first place. Over the bandwidth of the
grating, however, the intrinsic dispersion is negligible. This
is especially true in optical fibers for which the grating depth
is modest and the bandwidth affected by the grating rela-
tively narrow—the deepest made so far have a relative band-
width of AN/A=<0.01. The properties of the grating disper-
sion relation are well known—the periodicity opens up a
photonic band gap representing frequencies for which trav-
eling waves are forbidden and light is reflected. The gap has
width 2v 4« where the coupling strength= wAn/(2c) with
An the refractive index modulation of the grating. Outside
the gap, traveling waves are allowed, but the dispersion re-
lation is strongly curved with the group velocity given by its
slope(see Fig. 2

For our purposes, the most important consequence of the
grating is indicated by the horizontal arrows in Fig. 2. When
compared to its wave vector in the uniform medium, light of
a particular frequency experiences a shift in wave vector of

FIG. 2. Dispersion relation for a Bragg gratirigolid) super-  sjze [18—-22
posed on uniform medium dispersion relati¢thotted. Column
vectors indicate the Bloch vectofs: (f. ,f_) describing the rela-
tive strength of forwardf(,) and backwardf(_) plane waves in the Akg=— 6+ 5"~ k*. (7)
Bloch functions at different points on the dispersion relation. Solid

B o St s The hoice of ign reflects th fact ha the ratng allos
indicate shifts to the far brzmchelabeled b' and light to exist on either of two branches for any detuning, with
the upper sign taken for the branches to the right of the
Bragg wave numbekg= wgn/c. Note from Fig. 2 that the
shift is negative for frequencies above the band gap
(6>k), and positive for frequencies below the gap
(6<— k). Further the shift may be greater or smaller than
u=T|P|?, (4)  the coupling strengthx: Shifts of |[Ak¢ <k are achieved on
the branch near the uniform medium litiadicated by the
in terms of the pump amplitude and the nonlinear coeffi- solid arrows and the labels a and c in Fig; 8hifts of
cient '=3w®/(2cn), wherec is the speed of lighin ~ |Akg>« are achieved on the far bran¢imdicated by the
vacuoandn is the refractive index of the medium. The am- dotted arrows and the labels b and d in Fig.ghd simply by

—An<A<O0, (3)

where we have defined the nonlinear detuning

plification is most efficient when taking| 8| large enough, a wave vector shift of arbitrary size
_ and sign is obtained regardless of the grating strength! Thus
A=-2pu. (5)  although the phase matching condition may not be satisfied

) ) in the uniform medium, in the grating there is a change to the
This equation represents an exact balance between the waxg§smatch parameter due to the shift in the signal wave vec-
vector mismatch that results from the material dispersionior so that phase matching may be possible permitting effi-
and an additional nonlinear wave vector mismatch induce@jent conversion21]. From Eq.(7) we find that for any

by cross-phase modulati¢a7]. given Ak, the signal is phase matched at the unique detun-
ing
B. Effects with a grating
Most of the effects of the grating on phase matching can (AKg)2+ K2
be understood from Fig. 2 which shows the dispersion rela- 0=~ T oAk, (8)
S

tion of a uniform Bragg gratindsolid line) superposed on
the straight line dispersion relation of the corresponding uni- _ .
form medium(dashed ling The vertical axis is represented In principle then, at the correct detuning the grating produces

in terms of the detuning from the Bragg resonance phase matching for any initial mismateh
This result is at first sight surprising—we would not ex-

pect that a weak grating should significantly enhance the
gain at a frequency far detuned from the Bragg resonance.
The resolution lies in noting that phase matching is not of
Herev, is the group velocity of the signal in the uniform itself sufficient to produce gain—there must be a reasonable
medium, andvg= 7rc/(nd) is the resonant Bragg frequency, longitudinal mode overlap between the pump and signal
with d andn the period and average index of the grating, modes. While the modes of a uniform medium are forward-
respectively. The uniform medium dispersion relation ofand backward-traveling plane waves, the modes inside a

o= 28 6)
Ug
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grating are Bloch function28]. For shallow gratings, the E=[E expiksz) + E_exp(—iksz) ]exp(—iwgt)
Bloch functionsys are superpositions of plane waves of the ) )
form + Pexdi(k,z— w,t) ]+ lexgi(kiz— wjt) ]+ c.c.,

y=1 , explike) +f_exp(—ike2), ©) 1D

. . whereE, ,E_,P,| are the slowly varying amplitudes of the
where the amplitudeé.. are functions of frequency but not forwardj and backward-movingy sigr¥al ?‘ieldsp, and forward-

of position. Thus we can represent any Bloch function iNovin - . :
. g pump and idler field§see Fig. L We neglect
terms of the amplitudes, andf_ of the forward and back- backward-moving fields for the pump and idler which expe-

ward plane waves by the unit_ column vepﬁer(f+.,f,). rience negligible reflection from the grating, and write the
The (unnormalized Bloch functions for various points are refractive index as

indicated by the column vectors in Fig. 2. Far from the grat-

ing the Bloch functions are approximately plane waves, L 21z

while at the band edges they are standing waves. Now typi- n(w):n(w)+Ancos< T) (12
cally the pump, which is detuned from the gratitege Fig.

1), propagates as a forward plane wave, whereas the sign@kin 11(4) the mean index of the grating. Substituting Egs.

occupies a Bloch function determined by its detun®df  (11) and(12) in the wave equation, we make the undepleted
the wave vector shift needed to achieve phase matching is,mp approximation and other standard approximations to
small relative tox, the signal is in a Bloch function which is  each the systerfiL9]

relatively close to a forward plane waybranches a or)c

and there is large gain. For a very large wave vector shift to JE, i 9E, 1" &E,
the distant branche or d), the relevant Bloch function is +1 97 + i + 20, o7 +kE_

; i g 9
virtually a backward plane wave. The pump and signal are
then almost orthogonal and there is negligible gain. For in- +T[2|P|’E, +exp(—iAz)P?1*]=0, (133
termediate shifts at points near the band edge, the Bloch
functions on both branches are an equal combination of for-  9E_ i JE_ 1 " J°E_ 5
ward and backward plane waves and there is an intermediate = 5~ ~ T 5 = 52 TAE+ T 2T'|P[*E_=0,
degree of gain18,19,21,25% These results can be repre- g 9 (13b)
sented geometrically if the Bloch vectbis considered as a
vector in a real two-dimensional space. As a forward plane A id 1o 3
wave, the pump mode is represented by the vector (1,0). Therj —+ — —+ = — —+T;[2|P|2l +exp —iAz) P2E* ]
signal is represented by the vectbrcorresponding to its vi ot 2 v Iz

position on the dispersion relation. Then givakg, if the =0, (130

signal is detuned for perfect phase matching according to Eq.

(8), the anglea between the pump vector arfids given by . "o
+i£+'—£+1ﬁ£+r |P|?P=0. (130
dz v, t 2v, 9z° P

Akq

(10

tamz:’
Herevy, v; andv,, andl’, I';, andI',, are the group ve-
So for |Ak{ <k, a is small and the two vectors are almost !ocities and nonlinear co_efficients at. the signal frequency,
parallel giving large coupling. Fdi\k¢|> «, a=< /2 so the idler and pump fr_equgnues, respectively. From hereon, we
vectors are almost orthogonal and there is negligible cou@dopt the approximation that these quantities are the same
pling. All the effects in this section play roles in the pulsedfor all three frequencies and drop the subscripts. In particu-
results for parametric amplification as shown in Sec. v.  lar, we can assume the group velocities are the same as the
Note that the description here has made no mention of thegree of walk off over the length of a grating is negligible
pump power. This is accurate for cw second harmonic genL17]; It is then copvenlent to rescale the time variable intro-
eration in gratings—increasing the pump power increases thducing the quantityl =ut. The symbolsw”, ", andw;"”
second harmonic intensity in proportion but does not affecfePresent the intrinsic material dispersion at the three fre-
the phase-matching argumefi2d,24,29. For cw parametric  duencies. Finally, the nonlinearity is taken to be pos!twe.
amplification, however, this is an oversimplification. A full _ Note that due to the undepleted pump assumption, Eg.
treatment 19] shows that the detuning for maximum signal (139 is uncoupled from the other three. Alsh,  experi-
amplification depends on the pump povisee Eq(4)], and  ©€nces gain only |nd|rectly _througlh th_g grfatmg couplmg to
thus Eq.(8) does not give exactly the detuning for maximum E+ - We can maKe an additional simplification b_y nqtlng that
gain. This effect is not of importance for our purposes herdor @ typical grating geometry the second derivative terms
and the basic manner in which the grating produces wavéePresenting intrinsic dispersion are negligible. This is dis-

vector shifts remains valid. cussed in detail below. _ _
It is useful for understanding later results to examine

briefly the response of the system in the absence of the grat-
ing. In this case the second derivative terms in Ef8) are

We now present the coupled mode equations that conthe dominant source of dispersion, and we are not strictly
prise our model. Recalling that we assume that only the sigjustified in omitting them. For distances comparable to typi-
nal field is tuned to the grating, we write the electric field ascal grating lengths of a few centimeters, however, it is again

. MATHEMATICAL MODEL
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an excellent approximation. Without the gratirtg, plays
no role in the gain process and Ed3b) may be dropped.
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(13), the pump field remains unchanged from the grating-free
case. We take the initial pump and signal pulses to have

By a trivial transformation, the remaining three equationsGaussian profiles, with a pump width of,=2 and initial

reduce to the well known time-independent cgkd and the
general solution may be written down directly. While the

signal width ofw,=3. The nonlinear detuning has a peak
strengthu,,=2. The pump and signal are initially coinci-

precise form of the solution is not important here, we notedent and the initial idler field is zero. Propagation occurs for

that the pump propagates with a constant profile such that
[P(z,T)|=1(0),

where{=z—T is a position coordinate in the frame moving
with the pump. By analogy with Eq4), it is helpful to
introduce a position-dependent detuning

m()=TF3(L).

14

(19

a timeT=15. These parameters are the same for all calcula-
tions. From Sec. lll, in the absence of the grating we would
expect gain in the range 8= — 4 <A <0 with maxi-
mum gain forA= —4 [see Eqs(18) and(19)]. We perform
simulations for a range centered around this value such that
—16<A<8. As we can expect interesting results when the
coupling strength is comparable to the wave vector mis-
match, for each value ck we perform one simulation for
each integer value of in the range 0-16. The simulations

Further, without loss of generality, we may take the pumpthus lie in a two dimensionah—« plane. Anticipating our

profile f({) to have its peak af=0 and define the maximum
nonlinear detuning by

Mma= 1 (0)=T%(0).

The gain experienced by the signal due to the pump
given by

(16)

9(H)=vV-ATf3(()—A%/4. (17)
The signal is amplified for alf (if any), whereg is real. If

g is real andT is large, the signal grows approximately as
|E(Z,T)|~exdd()T]. For each pointZ on the pump, this
occurs for the range of wave vector mismatch

—4u(f)<A<O0, (18
with the maximum gain at
A=-2u(9), 19

[cf. Egs.(3) and(5)]. Note however, from Eq17) that for a
particular value ofA, the gain increases monotonically with
pump power. Thus provided the peak detunpag., is suf-
ficient to produce gain at alli.e., f2({)>—A/(4I')], the
gain is strongest at the peak of the pump. This has the co
sequence that regardless of the initial relative positions of th

pump and signal, the signal width decreases with time and it

peak becomes coincident with that of the pump. This con

trasts with the optical pushbroom described in Sec. | in>
which the signal sits on the leading edge of the pump. Fol

A outside the range in E@18), g is imaginary and the pulses
develop rapid oscillations but do not grow in amplitude.

IV. PARAMETER SPACE

results, it is helpful to introduce one further parameter

€=~ 2pmax— A, (20

.which is a measure of how well the system would be phase
fnatched in the absence of the grating—perfect phase match-

ing corresponds teé=0 [cf. Eq. (19)]. For the peak pump
strengthu =2 in our system, the weak fields experience
gain in the nongrating case |iE|<4, while the behavior is
oscillatory for|e|>4.

As an example of a real system described by our model
we consider optical fiber gratings. Taking the unit of length
as the centimeter, we find that the time unit is 50 ps, so that
the pump and initial signal widths are 100 ps and 150 ps,
respectively. A propagation time of 750 ps would require a
grating of lengthL= 15—-20 cm. Gratings at the lower end
of this range are available now. For a mode area of
A= 20 um?, the peak pump powetm..=2 is equivalent
to an actual power of 30 kW or an intensity of
150 GWni 2. A mode-locked Nd:YAG laser at 1.064m
would thus be a suitable pump source. In fact, a similar
Nd:YLF laser with powers in this range was used in recent
experiments to observe grating solitdd®]. The wave vec-

jfor mismatch takes the rangel6 cm 1<A<8 cm 'l The

gependence ak on the frequency separatidnw for a typi-

gal optical fiber is illustrated in Fig. 3. Each curve givess

a function of pump wavelength, for a given frequency
eparatiorAw which is marked as a fraction of ¥0s™ 1.

he curves were calculated by solving the eigenvalue equa-

tion for the fiber modegl7,29. Two significant wavelengths

are indicated. It is also clear thAt changes sign at the zero

dispersion wavelength near 1.2¢ém. The figure indicates

that the range ofA in our simulations corresponds to fre-

quency separations of the ord&rw=0.05<10" s ! to

We now set out the parameters to be explored in the nex@.25< 10" s . The case\ =0 is somewhat problematic as
section. Although we cannot span the entire parameter spade®m Fig. 3, we find this can only occur fasw=0 which is
which includes pulse widths, grating strengths, pump powot consistent with a frequency conversion process! In a me-

ers, and wave vector mismatch, we point out that the quali

dium with a more complicated dispersion relation, however,

tative behavior of the system is robust to quite large variait is conceivable that =0 could be achieved for some non-
tions in parameters and thus the physical arguments behirgkero frequency separation and hence we retain this value.
the simulations we describe are quite general. Throughouthe grating deptlx also takes realistic values: it ranges from
we use dimensionless units, but shortly we do make the cone=0 (the “empty” grating), to k=16 cm %, corresponding
nection to a typical optical fiber geometry to demonstrateto a relatively modest index modulation Aih=5x10"*.

that our choice of parameters is realistic. As EtBd re-
mains uncoupled from the other coupled mode equation

We can also demonstrate the validity of the approxima-
sons we have made. The pump and idler are assumed to be
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grating. Figures @&)—4(f) show the fields as a function of
position at six different times for the parameteYs- — 16,
x=28. For this case=12[see Eq(20)], so that the signal is
well outside the gain band. In this figure and later illustra-
tions of fields, the line styles indicate the fields as follows:
E,—solid line, E_—dot-dashed, P—dotted, and
|—dashed. Note that the horizontal axes shift as time
progresses and that the vertical scales refer to the moduli of
the signal and idler amplitudes. The pump is of course much
more intense than the other low-power fields and is shown at
a different scale. The initial configuration appears in Fig.
4(a) with the pump and forward signd&, coincident, and
the backward signdt _ and idler set to zero. Figs()—4(d)
show the fields aff=2.5, T=5, andT=10, respectively.
The idler begins to be generated by interactionEaf and

P while the grating couples energy between the forward and
backward signal. The bulk of the energy in the signal and
idler gradually becomes concentrated on the rear of the

pump. In this period the field structures are complicated and
change rapidly with time, and only modest growth occurs.
By T=12.5[Fig. 4(e)], substantial growth has occurred and
all three weak fields are localized on the rear of the pump
and have a regular single peaked shape. As propagation con-

unaffected by the grating in EqL3). Even for the smallest tinues toT=15[Fig. 4(f)], the signal and idler fields expe-
frequency separation and strongest grating described aboV/éence further growth but_the f|el_d profiles remain V|_rtually
the pump is detuned from the grating by greater than 15¢/nchanged. For comparison, Fig. 5 shows the fields at
vgk. For such a separation, both the reflective and dispersivé =15 in the grating-free case. Both the forward signal and
properties of the grating are negligible and our assumption iiller develop oscillatory features with no gain while the
justified. It is simple to check that spectral broadening of theP@ckward signal vanishes as there is now no coupling be-
pump due to self-phase modulati¢8PM) does not signifi- Ween the two signal fields.
cantly affect this conclusion over the short propagation !N Fig. 6 we show the final fields at=15 for a second
lengths considerefiL7]. In addition, in our simulations we Simulation withA=8, k=14, ande=—12[16]. Thus the
neglect the effects of material dispersion described by th&yStém is now on the opposite side of the grating-free gain
second derivatives in Eq$13). This is easily justified by band. The behavior is s_|m|Ia( in this case. At earl_y times the
consideration of the relative scale lengths over which SPMveak fields become highly irregular and complicated, but
and dispersion can play a significant role. The characteristi€ventually adopt simple peaked forms on the rear of the
nonlinear lengtf17] Ly, = 1/(T'P2)=0.5 cm is of the same PUMP Whe_re they _contmue to_grow ur_ufor_mly. Note that the
order as the pulse length. In contrast, for a typical value of@in in this case is larger still than in Fig. 4 and that the
the group velocity dispersion of 8,|=|d?k/dw?/~20 5|gnal' fieldsE . are §qmewhat narrower than |n'the first case.
ps’/km at 1.064um or 1.55u.m with the pulse widthw, \éVehdl_sculss_the (::lglns of trr]lesle dn_‘fererflcEs in SkG? I\(;I. In
~ ; : — w2l 2l oth simulations, however, the location of the weak fields on
kn}gi,f:i,ﬂ;(ra]dd;pter:z?jri]s;irrgt/[:?erlr_nDs (;’;’1,;1”53 sa?gl())/ r]e;he rear of the pump contrasts yvith growth in the nongrating
glected for propagation lengths of a few centimeters. Note o ase, for which the sllgnal and_|dler always move to the cen-
ter of the pump as discussed in Sec. lIl.

course, that the material dispersion gives rise to the mis : -
P g If the parameters are chosen such that the signalinies

match parameteA. Thus while we neglect dispersion over . . .
the bandwidth of a particular pulse, we do not neglect itsSldethe gain b_qnd _for the g_ratlng-free case, we ok_)serve even
effects over the much larger frequency separation of the dif_stronger amplification than in the cases just described and the

ferent fields. signal again appears on the rear of the pump. The appearance

The simulations were performed using an extension of a?f gain in this case is of course less striking than in the two

collocation method described in R¢B0]. This is made pos- OUEI_Of gainh barlﬂ exa_mp:jles. | how the total .
sible by dropping the second derivative terms in E8) so 0 see howne gain develops, we show Ihe fotal energy in

that the characteristics are straight lines, permitting a consicf—he signal and idler fields as a function of time for these two

| : lit- hods. simulations in Fig. 7@ (A=-16, k=8) and Fig. 1b)
erable speed improvement over split-step methods (A=8, k=14). For both cases, we find an initial period

where energy couples back and forth between the two signal
fields but the total energy in the grating does not change
significantly. The oscillations occur because the signal is ini-
tially chosen to have no energy in the backward mode. At
We begin our results with a time sequence of the evolvindater times, the oscillations die away and the energy increases
fields for a typical case. We choose parameters such that ttmost exponentially with time. Comparing Fig. 7a with the
signal would lie outside the gain band in the absence of theorresponding time sequence of fields in Fig. 4 indicates that

FIG. 3. Wave vector mismatch as a function ofA,. Each
curve is marked with a frequency separatidw measured in
10 s~

V. RESULTS

A. Evolution of fields
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FIG. 5. Fields atT=15 for A=8, k=0. This plot should be
compared with the equivalent time in the presence of the grating
shown in Fig. 4f).

the onset of growth occurs as the field structures begin to
become simpler and concentrated at the rear of the pump.
We have found this to be true in all simulations. Figure 7
also shows that the fields at=15 are smaller in Fig. @)

than in Fig. 6 because the amplification both begins later and
occurs more slowly in the first case than in the second.

The examples in Figs. 4 and 6 are typical of a very broad
range of parameters. The initial pulse evolution can be
highly involved but with sufficient time, the weak fields al-
ways experience growth and become located on the rear of
the pump regardless of the relative sizes\o&nd . For all
the simulations, however, thate of growth and detail of the
pulseshapesdo depend on the parametersand A and for
A> k the initial period before amplification begins may be
quite long. In this regime, the parametric amplification can

log,,(energy)

log,,(energy)
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be so poorly phase matched that it essentially plays no role FIG. 7. Energy in fields as a function of time fta the simu-

|E 105 L

.|

5x10* —

PN

FIG. 6. Fields aff =15 for a simulation withA=8, k=14. The

fields areE.. (solid), E_ (dash-do}, | (dash, P (dotted.

lation in Fig. 4 (A=—16, k=8) and(b) the simulation in Fig. 6
(A=8, k=14). Line styles areE, (solid), E_ (dash-dot and |
(dash.

and pulse-shaping effects such as the optical pushbroom de-
scribed in Sec. | which rely only on XPM can operate
[14,15. Before considering the detailed dependence of the
system on the mismatch and grating strength, we first de-
scribe the basic process that allows gain for such a broad
range of parameters.

B. Mechanism for gain

The gain of course arises by a similar argument to that
described for the cw case in Sec. Il. There, the gain was
enhanced for frequencies at which the grating introduced a
wave vector shift compensating for the original mismatch
A. In the pulsed case, we can expect self and cross-phase
modulation to shift the frequencies of the different pulses
over time so that similar effects may occur even if the initial
frequencies are not phase matched by the grating. It is natu-
ral to suppose that the gain is largest if the signal spectrum
moves to a point on the grating dispersion relation at which



54 PARAMETRIC AMPLIFICATION OF SHORT PULSESN . .. 4279

the signal wave vector is shifted to the center of the gain 40
band in the grating-free case. In other words, we might ex-

pect the signal to experience maximum gain if the grating

induced wave vector shift produces an effective mismatch

Agr=A+AKe= — 2o (21)

or equivalently, if

Ak,=¢€ (22

[see Egs(19) and(20)]. In fact, as the weak fields become 0
located on the rear of the puniipee Fig. 4f)] rather than at

the peak we should consider the strength of the pump at the
peak of the signal. We thus introduce one further parameter:
the pump-induced nonlinear detuning at the peak of the sig-
nal given by[see Eq.4)]

-20
ps(T)=Tf(z(T)-T), (23

wherezy(T) is the position of the signal peak at tirfie It is . . .

clear thatu(T)< umax. Our final prediction then is that the FIG. 8. Detuning and wave number of fields as a function of

gain should be maximized i o4~ — 2. time for the time sequence in Fig. 4. Line styles indicate the same
These arguments can be confirmed by examining the evdields as in Fig. 4.

lution of the frequencies of the different pulses. The signal

detuning defined in Eq(6) is determined numerically for E, . In Fig. 8, the pump detuning and wave number increase

each signal field by the expressions monotonically with time. This is because on the rear of the
pump(where the signal peak is foupdSPM induces a posi-
- J : . .
== —¢.(2,T), (24)  five frequency shift. The detuning and wave number are ex-

actly coincident ¢,=qp) as the pump obeys the uniform
medium dispersion relationw,=ck,/n(w,). The idler
shows similar behavior: in the initial period of complicated
E.(zT)=|E.(z,T)|exdi¢(z,T)]. (25  dynamics,s; andg; have no simple relationship, but once
strong amplification begins, these two parameters also be-
By analogy with Eqs(24) and(25), we also define detun- come coincident since the idler obeys the uniform medium
ings for the idlers; and pumps, that represent deviations dispersion relation as well. The signal fields display very
from the center frequencies; and w, [see Eq.(11)]. Itis  different behavior. In the initial period when energy oscil-
also useful to consider the local wave numbers of the field¢ates betweel, andE_ , the signal detunings also oscillate
defined as wildly. In this regime, the simple definition of detuning as
the time derivative of the phase of each field is not well

where the instantaneous phasks(z, T) are defined by

q-=i¢-(z 8 (26) defined. However, at about=6.5, when the field oscilla-
gz tions die away and the gain begins, we find that both the
detuning and wave vectors parameters become constant and
wherej runs over the symbols-, —, i andp for the signal,  remain so for the rest of the simulation. Moreover, from
pump and idler fields, respectively. about the same time, we have ~5_ andq, ~q_ due to

Figure 8 shows the frequency detunings and wave vectorg,q strong coupling of the two signal fields by the grating.

for all four fields as a function of time for the simulation of Note thatq, andq_ represent changes in the absolute wave

Fig. 4. A”. these_ parameters are measured at the peak of trl/eectors ofe, andE_, rather than the absolute wave vectors
forward signal fieldE , . The detunings are shown corrected

for the effects of SPM and XPM by the pump—the nonlinearf[hemselv.es’ S0 thgt although they refer to waves pro_pagatlng
opposite directions, they may have the same sign. The

index change induced by the pump shifts the band gap dow; havi ¢ the sianal f d ; " |
in frequency(for a positive nonlinearity—and are defined enhavior of the signal frequency and wave Vvectors strongly
suggest that the onset of gain is related to the signal param-

for j=+,—,i,p by : )
eters nearing particular values. In contrast to the pump and
5=08+0 ut) (27)  idler, the signal detunings and wave vectors do not become
i= 9T OjMs L), L ; . . AR
coincident due to the dispersion of the grating. Noting in Fig.
where the caret denotes the directly measured detunings a®dthat the signal detunings become fixed at a negative value
o;=2 for j=+,—,i and o,=1, indicating that XPM in- and the wave vectors become fixed at a positive value, we
duces a shift twice as large as SH#] [see Eq(6)]. see that the signal lies on the bottom right bratahof the
We are now able to see how the frequency evolution supdispersion relation in Fig. 2 and hence that the induced wave
ports our argument explaining gain. We stress again that theector shift satisfies € k<<Aks. Recall from the first para-
parameters are measured at the peak of the signal fielgraph of Sec. V A that for this case=8 and the “desired”
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10— simple picture would predict that asincreases, the value of
g-. for optimum phase matching would increase smoothly
from negative values to positive values with. =0 when
k=¢€. Performing the simulations we typically find that
while g. would not be zero exactly wher=¢, this is a
reasonable approximation and the trendof increasing
with k is certainly obeyed. Given the complexity of the sys-
tem, it is not surprising that we do not find perfect agreement
with essentially cw arguments.

We have remarked above that for parameters placing the
systeminside the gain band, amplification also occurs. Fur-
ther, if the signal is initially to one side of the gain band, the
effects described above for the out of band cases now act to
move the signal towards the center of the gain band where
the amplification is largest.

(=]
LI B s Bt B B B B L L B

11 L1 | 1 ! 1 1 | 1 1 1 1 | | I

-10

VI. DEPENDENCE ON PARAMETERS
A. Rate of gain

FIG. 9. Effective wave number mismatch, = A+ Ak, and I_-|aving e_stablished _how the gr_ating can facilitate amplifi-
v=—2T|P(24)[? as a function of time for simulation with cation outside the grating-free gain band, we now turn to the
A=8, k=14 (Fig. 6). detailed dependence of the pulsg evolution on the system

parametersc and A. The most basic property is the rate at
shift is e=12> «. Thus the signal spectrum is in the correct Which gain occurs. In Fig. 10 we show the total energy in the
quadrant of the dispersion relation to satisfy Fg2) and signal field as a function of time for a range of different
achieve phase matching. grating strengths and two wave vector mismatches—one far

This argument is quantitatively confirmed in Fig. 9 for the outside the grating-free gain band with=8 [Fig. 10@)],
simulation corresponding to Fig. 6 where we take into acand the other at the center of the gain band witk —4
count the location of the signal on the rear of the prpgee  [Fig. 10b)]. For each mismatch, the total energy is plotted
discussion following Eq(22)]. The solid line shows the non- for 10 values of« indicated by the labels on each figure and
linear detuning at the signal peak= —2u(t). We expect by the line styles described in the caption to Fig. 10. The
gain when the effective wave vectarq~ — 2I" u¢(t). Now  basic appearance of the figures is as we would expect. For
in the uniform medium with a constant phase velocity, weeach value ok, there is an initial period in which the signal
would have 6,=q,, so with the grating included, energy is unchanged followed by a steady increase. We saw
q.— &, represents the grating-induced wave vector shifin Sec. VB that the initial period corresponds to the signal
Aks. Therefore we hava .4=A+(q, — 6,). This quantity ~ frequency and wave vector being shifted from the center of
is shown with the dotted line. The convergence of the twathe photonic band gap to values at which the amplification is
lines at about the same time as gain is observed in Fig. 7 phase matched. Note that for some valuescathe initial
is a dramatic confirmation that the onset of gain is indeederiod is negligible while for others it occupies the full time
associated with phase matching mediated by the grating. ©of the simulation. Moreover, the dependence of the initial

We have stated above that the shift in detuning allowingperiod onx is strikingly different for outside the gain band
growth is produced by XPM. On the rear edge of the pumgFig. 10@] compared to inside the gain bafieig. 10b)].
however, XPM alone should generate positive frequency Discussing first the out of gain band case, Fig(alO
shifts whereas for the case in Fig. 1 the frequency shifts t&hows two obvious properties: both the rate of dginen by
negative values. In fact in the initial period of evolution be-the slope of the curvgsand the time at which gain begins
fore gain begins, the combined action of the nonlinear interare functions ofk. Considering the rate of gain, we observe
actions and the grating leads to a very complicated frequencipat during the period of steady growth, the slope increases
profile across the signal pulses. With sufficient time, fre-monotonically withk. This is simply interpreted in terms of
guencies allowing phase matching appear and are amplifiethe coupling of Bloch functions as described in Sec. Il. Re-
As growth occurs only at those frequencies, they quicklyplacingAkg by e in Eq. (10), we find the degree of overlap
grow to dominate the spectrum. between the pump and the Bloch function occupied by the

The two simulations we have discussed demonstrate thgignal increases witlkk and thus so does the rate of gain.
signal spectrum moving to a point where gain is enhanced by urning to the time at which the gain starts to act, we find a
grating-assisted phase matching. From many other examplegyite different dependence ot Amplification begins al-
we have found this to be a very general behavior. Strongnost immediately fork=10, 12, and 14, while there are
gain invariably occurs when the signal detuning and wavenitial periods without gain of varying length for<10 and
vector can compensate the initial mismatchNVhile the ac- «>14. In fact we find both for this case &=8 and in
curacy of this picture is not always as striking as for the casgeneral, that the initial time before gain begins increases
shown in Fig. 9, the variation in the frequency parametersvith |«—|e||. We can understand this from EB) which
with A and « show trends that confirm its correctness. Forgives the detuning for perfect phase matching in terms of
example, consider the behavior as we varyf e>0: Our  and the wave vector shifikg. In the present case we have
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10 —————— - S gins immediately when the grating strength vanishes
(k=0). These effects are a consequence of the fact that the
signal is already optimally phase matched in the absence of
the grating. Wherk is nonzero, the wave vector shifts in-
duced by the gratingvorsenthe phase matching, decreasing
the gain rate. As the grating strength increases, the phase
matching becomes ever worse so that the gain rate falls with
increasingk. In fact for k#0 with A=—4, the pulse evo-
lution is quite involved. As there is no frequency allowing
perfect phase matching, there is no preferred frequency at
which the signal should settle. Further the pulse shape does
not become regular and single peaked in contrast to the re-
. sults shown up till now. Far from the band gap, the small
;S 8.~ wave vector shif(to the branches marked a and c in Figy. 2
e - tends to zero, so the perturbation to the phase matching is
L T less severe at large detunings. Near the center of the gain
0 0 band therefore, amplification therefore tends to occur at large
T detunings. Asx increases, however, the band gap broadens
and the signal detuning must be shifted by ever large
15 i amounts to reduce the magnitude of the grating induced
: wave vector shift. The time required to produce the detuning
increases with its size, explaining the increase in the initial
delay with k. Indeed fork>12, this time is longer than the
simulation timeT = 15[see Fig. T)]. Note that this complex
behavior occurs only foA= —4. For other mismatches in-
side the gain band, the system operates similarly to the out of
gain band case, and the dynamics are correspondingly sim-
pler.

As is suggested by Figs. (@ and 1@b), the maximum
gain observed in all our simulations is for the case of perfect
phase matching in the absence of the gratidg=(—4,
x=0). This is simply because for all other cases, the grating
is not directly connected to the parametric amplification pro-
cess, but only acts to improve the phase matching—a grating
cannot improve on perfect phase matching. The cw response
of a finite grating differs from the present pulsed analysis in
this respect—in the cw system there are many parameter
values for which the output is larger with the grating than in
a perfectly phase-matched medium of the same lefitfth
FIG. 10. Total signal energy as a function of time for varying 1hiS occurs because finite gratings can store large amounts

x.(8) A=8, (b) A= —4. The curves are labeled aywhich is also  Of energy at Fabry-Ret resonance$31]. Light tuned to
indicated by the line style as follows:=0 (solid), 1 (dot), 2 (short ~ Such a resonance experiences a resonantly enhanced gain,
dash, 4 (long dash, 6 (dot-short dash 8 (dot-long dash 10(short  larger than would occur with ideal phase matching in a uni-
dash-long dash 12 (solid), 14 (dot), 16 (short dash form medium[19].

The Bloch functions occupied by the signal play another
gole in the gain process—determining the relative amplitudes
of the two signal fields. Observe in Fig(f4that the forward
gignal field is smaller than the backward field, while this
Situation is reversed in Fig. 6. This is simply a reflection of
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Aks= €. The wave vector shift needed for phase matching i
of courseAks=€ [Eg. (22)]. Equation(8) shows that the
detuning for phase matching occurs at the band edg

[6=— sgn(e)«], if k=]e|, and moves monotonically away the relative contribution of forward and backward plane

Iir:nrg ;[Qlfegafg? fhigiidr?(al_ li' L'jrg;rsastgs(s:es;:c?é dzfr-grf thevaves in the Bloch function as indicated by the vectors in
g q y Fig. 2[see Eq(9)]. In general, simulations show that as the

center of the band gap to the correct detuning for phase_:. : : ; o
. : o ratio e/ k varies, the relative size dt, and E_ varies in
matching then must also increase wjth—|€||, explaining ,
) S . ; . close correspondence to the content of the Bloch function at
the trend in the length of the initial period without gain.

: . . tpe point on the dispersion relation for optimum phase
These trends in the rate of gain and time of onset are ng atching. Thus foe/ k<1 E. is the dominant field in the
peculiar to the parameters illustrated and are observed for an 9. SRS Bt .
values ofA outside the gain band. signal, whereas foe/ k>1, E_ dominates.
Quite different behavior is observed far=—4 at the
center of the gain banfFig. 10b)]. The rate of gain now
decreaseswith increasingx while the initial delay period The final characteristic of the pulse amplification we con-

increases monotonically witk. The gain is fastest and be- sider is the width of the signal and idler pulses. As pointed

B. Pulse widths
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out in Sec. Ill, if the signal lies in the gain band in the tion, we can expect strong gain to be associated with narrow
absence of the grating, the signal narrows indefinitely, besignal pulses and vice versa—consistent with Figs. 4 and 6.
coming ever more tightly confined around the peak of the

pump where the gain is largest. With the grating included,

the signal narrows indefinitely if it lies inside the gain band. VII. DISCUSSION AND CONCLUSION

Outside the gain band, however, the pulse widths settle at
constant values once the amplification begins.

The final width of the idler pulse shows relatively litle  The principal result of this paper is the prediction of am-
variation amongst the simulations. The widths of the signablification of the signal at frequencies that lie outside the
fields, however, vary significantly with the simulation gain band in the absence of the grating. Of course, similar
parameters—compare the long tailed and E_ fields in  results are known for cw second harmonic generation and
Fig. 4(f) with the well-confined fields in Fig. 6. The variation parametric amplification as discussed in Sec. Il. There is,
in signal width shows two clear trends: it decreases withowever, a striking difference between these problems and
increasing« and increases with increasing Both these  the present case of pulsed parametric amplification. In the cw
trends are closely linked to the group velocity of the signal a%roblems, the gain is enhanced only if the input signal fre-
we now demonstrate. The pump can be thought of as “degency is tuned to the point on the grating dispersion relation
positing” energy into the S|gna}l Just to the rear of the PUMP 4t which phase matching occurs. In the pulsed regime, this
peak. If the signal group velocity is close to the pump Vemc'restriction does not apply—the input signal need only lie in

ity, energy already in the signal does not significantly fall .
. . . ; the vicinity of the Bragg resonance. XPM generates new
behind the pump, and the signal remains well confined. If th?requencies until part of the signal spectrum lies at the phase

signal velocity is significantly less than that of the pump, : . o
: . . - 'matched detuning and these frequencies are then amplified.
energy already in the signal falls behind the pump producin hus in the pulsed case, the gain may be said to “self-tune”

an extended tail. Hence the signal pulse width should de(—)r “self-lock” While this is an appealing effect in its own
crease with increasing group velocity. Note that in this argu— o aiso has important consepﬂenceg experimentally. Ex-
ment the sign of the signal velocity is important—a negative gnt, P 9 P Y.

large group velocity would cause the signal energy toperlments in the cw regime would require precise tuning of

quickly fall behind the pump and lead to a very broad pulse.the input signalin fiber gratings typically to an accuracy of

Now the group velocity of the pulse is given by the slopemtu C: Iﬁ;ﬁotcvanpggf _rggtor?eitxzaecga”gjsiés gssgﬁgw;%ts
of the dispersion relation in Fig. 2, vanishing at the band y ' P

edges and approaching the speed of light at large detuningghOUId be simpler in this regard, because the signal fre-

Once the gain is established, we expect the signal detuning ghiency may be chosen anywhere near th? band.gap. As the
be approximately given by Ed8) with k.= . For this de- position of the Bragg resonance shifts with environmental
tunin%p the groug \?elocity>i/s given by s factors such as temperature and strain, the self-locking could

prove most useful.
K2— €2 In fact, the same effect could in theory occur without a
(29 grating—in a uniform medium, XPM can still shift the signal
and idler around thenaterial dispersion relation until phase
matching occurs. The difference is one of scale. The grating
dispersion is so strong that the error in phase matching can
be accommodated by a shift in the signal detuning of the
order ofv 4, corresponding to a wavelength shift of perhaps
less than a nanometer. In the absence of the grating, the
ignal wavelength would need to shift by many tens of na-
ometers to compensate for the same mismatch. This re-
quires much longer propagation distances and makes for a
$nuch less striking effect.

A. Self-locking gain

v= .
K2+ €

Note in particular, that fok<| €|, the signal occupies one of
the branchegb or d and has a group velocity of opposite
sign to the pump. Equatiof28) shows that the signal veloc-
ity increases monotonically witl, which by the argument
of the previous paragraph shows that the signal width shoul
decrease with increasing. Similarly, Eq. (28) shows that
fixing «, the group velocity should decrease, and thus th
pulse width increase with increasing We have observed
both these trends in our simulations. The examples in Figs.
4(f) and 6 are consistent with this picture. For Figf)4he
signal lies on the d brancfsee Sec. VB where the signal The self-locking idea leads to another important issue.
group velocity is negative and the width is large. In contrastFrom an experimental point of view, the geometry described
in Fig. 6 where the signal field lies on the a branch, the grougn this paper is identical to that in our earlier work on the
velocity is positive and the pulse is narrow. These argumenteptical pushbrooni14,15,33—a weak pulse and a strong
also explain the fact that the fields grow on the trailing edgepulse are launched into a grating and allowed to interact. In
of the pump—unless perfectly phase matched in the absendbe pushbroom case, the frequency separafien is as-

of the grating, the signal group velocity must be smaller tharsumed to be large, so that the wave vector mismatcis

the pump velocity and hence the signal lags the pump. Thalso large and parametric amplification does not play a role.
idler can only grow in company with the signal and thus isIn this regime, the signal shows quite different behavior.
also found on the rear of the pump. Note the similarity of Though it is not amplified, by the combined action of XPM
these arguments with the explanation for the relative rates aind grating dispersion it is substantially compressed and
gain in Sec. VIA. In fact, as the rate of gain also increaseswept out of the grating on tHeadingedge of the pump. In
with the overlap between the pump and signal Bloch functhis paper, however, we have shown that the inclusion of the

B. Regime of the pushbroom
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12 theory to be highly accurate. This is confirmed by other

simulations. Finally, to give a sense of scale let us find the

frequency separation that would be required to hAve3

for the experimental fiber parameters discussed in Sec. IV.

There we chose the unit of length as the centimeter so that
1. with a pump wavelength of

10

we seek A=3 cm .
Ap=1.064 um, from Fig. 3 we obtain a frequency separa-
tion of Aw~0.07x10'° s~ ! or a wavelength separation of
about 30 nm.

C. Other issues

We have assumed throughout that the signal is tuned to
the grating. For several reasons it might be preferable to have
. the idler close to the Bragg resonance instead. The action of
o E——— A A the grating in phase matching would remain the same, but
5 10 15 the role of the signal and idler fields would be reversed. For

7 example, with our choice of the signal being close to reso-
nance, the energy in the idler often exceeds that in the two

FIG. 11. Field intensities af =25 for a simulation withk=1, signal fields, as can be Se?n in Fig. 7. Further,. the idler is
A=3.5, ya=2. Line styles ardE . |? (solid), |E_|? (dash-dor, ~ @lways narrower than the signal fields because its group ve-
1|2 (dash, and|P|? (dotted. As usual, the pump is not shown to l0City is not reduced by the presence of the grafisee Sec.
scale. VIB). Finally, whereas the signal would be partially re-

flected at the rear of the grating due to an impedance mis-
grating allows gain even when is quite large. In what match between the grating and the surrounding uniform me-
regime then, does the existing theory describing the pushiium, the idler would be completely coupled into the
broom, which neglects parametric amplification, actually ap-uniform medium. By making the idler resonant with the grat-
ply? Is it not true that regardless of the size of the mismatching, these features would then become properties of the sig-
parameterA, and therefore of the frequency separationnal instead.
Aw, we need only wait for the signal to be shifted to the Throughout this paper, we have used an undepleted pump
phase-matched detuning before gain proceeds and swamggproximation. For some parameters, the gain can be so
the compressive effects seen in the pushbroom? large that this approximation would begin to fail unless the

The answefwhich is happily negative once more lies in initial signal amplitude was quite weak. An example is the
the Bloch functions. For larg&w implying (normally) large  simulation represented in Fig(&, where the signal energy
A> k, phase matching occurs on one of the distant brancheacreases by nine orders of magnitude, and within the gain
(b or o) of the dispersion relation, and the longitudinal modeband the growth can be even more rapid. While it would be
overlap between the pump and signal is so poor that the gaiglementary to include pump depletion in our model, we have
is negligible. Moreover, ad increases, it takes ever longer instead concentrated on the basic mechanism underlying the
for the signal to be shifted to the phase-matched frequency iappearance of amplification outside the gain band.
the first place, leaving aside the low gain when phase match- A related issue is the problem of stimulated Raman scat-
ing occurs. The final question is then exactly how large mustering (SRS of the pump in optical fibers. For powers of the
A be before we can neglect the effects of parametric amplierder of 30 kW, SRS can be expected to be important over
fication. It is difficult to give a complete answer to this ques-the typical length of fiber gratinggl7]. SRS should intro-
tion, but the following criterion seems a reasonable estimateluce two main effects to the system. It clearly acts as a
for order of magnitude purposes. Equati@0) gives the nonlinear loss to the pump. This effect would reduce the gain
“angle” between the Bloch vectors representing the pumprate but is unlikely to qualitatively change the behavior.
and signal. We suppose that the gain is negligible if theMore significantly, the energy extracted from the pump by
overlap is so small that cass0.1. Then Eq(10) immedi- SRS appears as a Stokes wave over a broadband of longer
ately gives the condition that parametric amplification can bavavelengths. For a pump wavelength ofxin, the peak of
neglected ifl e/ k| =10 [see Eq(20)]. We show an example the Stokes wave spectrum is shifted by about 50 nm. This is
in Fig. 11. This figure shows the intensity of the fields at thecomparable to the wavelength separations considered in this
end of a simulation with the same parameters used in Figs. gaper. Hence, SRS may deposit a significant fraction of the
and 6 but with coupling strengtk=1 and A=3. Thus pump energy into the signal or idler, and should be included
|el k| is only ~4.7. However, the probe is substantially com-in a complete treatment. The present study, while neglecting
pressed and lies on the leading edge of the pump, as wouleRS clearly elucidates the influence of the grating on para-
be expected in the pushbroom regifid,15. The peak in- metric amplification and provides insight which would be
tensity of the idler is a factor 10 smaller than the peak signamuch harder to extract from a model which included SRS
intensity. Repeating the simulation without including para-from the beginning. In addition, SRS should be much less
metric amplification produces a similar plot with no idler important in other geometries such as semiconductor grat-
field. Thus forA yet larger, we should expect the idler field ings, for which the Raman gain band is usually much nar-
to be still smaller than in Fig. 11 and the existing pushbroonrower than in glass. In that case, one could select a signal
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frequency that was far from the generated Stokes wave. tage that high pump powers are more easily produced in
The inclusion of a grating in a parametric amplification short pulses than for long periods. Moreover, in the cw re-

system profoundly changes the response of the system. Gagfime, the system shows very fine spectral features due to

is permitted over a much wider range of parameters than imarrow Fabry-Pet resonancefl9] which may complicate

the corresponding uniform medium and produces large amexperiments. These narrow fringes are absent in the pulsed

plitude well-shaped pulses. The experimental design concase which seems a promising system for experimentation.
straints needed to produce the effects described in this paper

are quite demanding but as discussed in Sec. lll, current

optical fiber gratings with a high-powered Nd:YAG source ACKNOWLEDGMENTS
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